Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 17(1): 91-102, 2017 01.
Article in English | MEDLINE | ID: mdl-27376692

ABSTRACT

We previously reported that transplantation (Tx) of prevascularized donor islets as composite islet-kidneys (IK) reversed diabetic hyperglycemia in both miniature swine and baboons. In order to enhance this strategy's potential clinical applicability, we have now combined this approach with hematopoietic stem cell (HSC) Tx in an attempt to induce tolerance in nonhuman primates. IKs were prepared by isolating islets from 70% partial pancreatectomies and injecting them beneath the autologous renal capsule of five rhesus monkey donors at least 3 months before allogeneic IK Tx. HSC Tx was performed after mobilization and leukapheresis of the donors and conditioning of the recipients with total body irradiation, T cell depletion, and cyclosporine. One IK was harvested for histologic analysis and four were transplanted into diabetic recipients. IK Tx was performed either 20-22 (n = 3) or 208 (n = 1) days after HSC Tx. All animals accepted IKs without rejection. All recipients required >20 U/day insulin before IK Tx to maintain <200 mg/dL, whereas after IK Tx, three animals required minimal doses of insulin (1-3 U/day) and one animal was insulin free. These results constitute a proof-of-principle that this IK tolerance strategy may provide a cure for both end-stage renal disease and diabetes without the need for immunosuppression.


Subject(s)
Graft Rejection/immunology , Graft Survival/immunology , Immune Tolerance/immunology , Islets of Langerhans Transplantation , Islets of Langerhans/blood supply , Kidney Transplantation , Kidney/blood supply , Animals , Female , Graft Rejection/prevention & control , Macaca mulatta , Male , Transplantation, Homologous
2.
Am J Transplant ; 14(2): 343-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24405666

ABSTRACT

Vascularized composite allograft (VCA) transplantation can restore form and function following severe craniofacial injuries, extremity amputations or massive tissue loss. The induction of transplant tolerance would eliminate the need for long-term immunosuppression, realigning the risk-benefit ratio for these life-enhancing procedures. Skin, a critical component of VCA, has consistently presented the most stringent challenge to transplant tolerance. Here, we demonstrate, in a clinically relevant miniature swine model, induction of immunologic tolerance of VCAs across MHC barriers by induction of stable hematopoietic mixed chimerism. Recipient conditioning consisted of T cell depletion with CD3-immunotoxin, and 100 cGy total body irradiation prior to hematopoietic cell transplantation (HCT) and a 45-day course of cyclosporine A. VCA transplantation was performed either simultaneously to induction of mixed chimerism or into established mixed chimeras 85-150 days later. Following withdrawal of immunosuppression both VCAs transplanted into stable chimeras (n=4), and those transplanted at the time of HCT (n=2) accepted all components, including skin, without evidence of rejection to the experimental end point 115-504 days posttransplant. These data demonstrate that tolerance across MHC mismatches can be induced in a clinically relevant VCA model, providing proof of concept for long-term immunosuppression-free survival.


Subject(s)
Composite Tissue Allografts/immunology , Graft Rejection/immunology , Graft Survival/immunology , Hematopoietic Stem Cell Transplantation , Major Histocompatibility Complex/immunology , Vascularized Composite Allotransplantation , Animals , Composite Tissue Allografts/pathology , Histocompatibility , Immunoenzyme Techniques , Immunosuppressive Agents/therapeutic use , Lymphocyte Culture Test, Mixed , Swine , Swine, Miniature , T-Lymphocytes, Regulatory/immunology , Transplantation Chimera/immunology , Transplantation Tolerance/immunology
3.
Transplant Proc ; 41(2): 539-41, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19328921

ABSTRACT

Clinical composite tissue allotransplantation can adequately reconstruct defects that are not possible by other means. However, immunosuppressant toxicity limits the use of these techniques. Clinical attempts to reduce the amount of immunosuppression required by induction of an immunologically permissive state have so far been unsuccessful. The aim of this study was to induce tolerance in a preclinical large animal model. Donor hematopoietic stem cell (HSC) engraftment was induced by T-cell depletion, irradiation, and a short course of cyclosporine administered to the recipient, along with a hematopoietic cell infusion from a single haplotype major histocompatibility complex (MHC) mismatched donor. Skin was then allotransplanted from the donor. Both primarily vascularized skin flaps and secondarily vascularized conventional skin grafts were allotransplanted to investigate if the mode of transplantation affected outcome. Control animals received the skin allotransplants without conditioning. Tolerance was defined as no evidence of rejection at 90 days following transplantation. Conventional skin grafts only achieved prolonged survival (<65 days) in HSC-engrafted animals (P < .01). In contrast, there was indefinite skin flap survival with the achievement of tolerance in HSC-engrafted animals; this was confirmed on histology with donor-specific unresponsiveness on MLR and CML. Furthermore, a conventional skin donor graft subsequently applied to an animal tolerant to a skin flap was not rejected and did not trigger skin flap rejection. To our knowledge, this is the first time skin tolerance has been achieved across a MHC barrier in a large animal model. This is a significant step toward the goal of clinical skin tolerance induction.


Subject(s)
Skin Transplantation/immunology , Transplantation, Homologous/immunology , Animals , Cyclosporine/therapeutic use , Graft Survival/immunology , Immune Tolerance/immunology , Immune Tolerance/physiology , Immunosuppressive Agents/therapeutic use , Interleukin-3/therapeutic use , Lymphocyte Depletion , Models, Animal , Skin/blood supply , Stem Cell Factor/therapeutic use , Surgical Flaps , Swine , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...