Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 64(4): 705-715, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38420746

ABSTRACT

BACKGROUND: Donors possess heterogeneous red cell concentrates (RCCs) in terms of the biological age of their red blood cells (RBCs) as a direct result of various donor-dependent factors influencing rates of erythropoiesis. This study aimed to estimate the median biological age of RBCs in RCCs based on donor age and sex to investigate inherent differences in blood products' biological ages over hypothermic storage using estimated median densities (EMDs). STUDY DESIGN: Sixty RCCs were collected from four donor groups; male and female teenagers (17-19 years old) and seniors (75+ years old). A Percoll density-based separation approach was used to quantify the EMDs indicative of biological age. EMD and mean corpuscular hemoglobin (MCHC) were compared by correlation analyses. RESULTS: Differences in the median biological age of RCC units were observed with male donors having significantly higher EMDs compared to females (p < .001). Teen male donors possessed the highest EMDs with significantly elevated levels of biologically aged RBCs compared to both female donor groups, regardless of storage duration (p < .05). Throughout most of the 42-day storage period, senior donors, particularly senior females, demonstrated the strongest correlation between EMD and MCHC (R2 > 0.5). CONCLUSIONS: This study provides further evidence that there are inherent differences between the biological age profiles of RBCs between blood donors of different sex and age. Our findings further highlight that biological age may contribute to RBC quality during storage and that donor characteristics need to be considered when evaluating transfusion safety and efficacy.


Subject(s)
Erythrocytes , Sex Characteristics , Adolescent , Humans , Male , Female , Aged , Young Adult , Adult , Blood Donors , Erythrocyte Transfusion , Aging , Blood Preservation
2.
Biomedicines ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36289758

ABSTRACT

Acute liver failure (ALF) is a rare but devastating disease associated with substantial morbidity and a mortality rate of almost 45%. Medical treatments, apart from supportive care, are limited and liver transplantation may be the only rescue option. Large animal models, which most closely represent human disease, can be logistically and technically cumbersome, expensive and pose ethical challenges. The development of isolated organ perfusion technologies, originally intended for preservation before transplantation, offers a new platform for experimental models of liver disease, such as ALF. In this study, female domestic swine underwent hepatectomy, followed by perfusion of the isolated liver on a normothermic machine perfusion device. Five control livers were perfused for 24 h at 37 °C, while receiving supplemental oxygen and nutrition. Six livers received toxic doses of acetaminophen given over 12 h, titrated to methemoglobin levels. Perfusate was sampled every 4 h for measurement of biochemical markers of injury (e.g., aspartate aminotransferase [AST], alanine aminotransferase [ALT]). Liver biopsies were taken at the beginning, middle, and end of perfusion for histological assessment. Acetaminophen-treated livers received a median dose of 8.93 g (8.21-9.75 g) of acetaminophen, achieving a peak acetaminophen level of 3780 µmol/L (3189-3913 µmol/L). Peak values of ALT (76 vs. 105 U/L; p = 0.429) and AST (3576 vs. 4712 U/L; p = 0.429) were not significantly different between groups. However, by the end of perfusion, histology scores were significantly worse in the acetaminophen treated group (p = 0.016). All acetaminophen treated livers developed significant methemoglobinemia, with a peak methemoglobin level of 19.3%, compared to 2.0% for control livers (p = 0.004). The development of a model of ALF in the ex vivo setting was confounded by the development of toxic methemoglobinemia. Further attempts using alternative agents or dosing strategies may be warranted to explore this setting as a model of liver disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...