Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531417

ABSTRACT

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Prostatic Neoplasms , SOXB1 Transcription Factors , Small Cell Lung Carcinoma , Humans , Male , Adenocarcinoma/pathology , Down-Regulation , Lung Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Small Cell Lung Carcinoma/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Exportin 1 Protein
2.
iScience ; 24(11): 103224, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34712921

ABSTRACT

Activation of mitogenic signaling pathways is a common oncogenic driver of many solid tumors including lung cancer. Although activating mutations in the mitogen-activated protein kinase (MAPK) pathway are prevalent in non-small cell lung cancers, MAPK pathway activity, counterintuitively, is relatively suppressed in the more aggressively proliferative small cell lung cancer (SCLC). Here, we elucidate the role of the MAPK pathway and how it interacts with other signaling pathways in SCLC. We find that the most common SCLC subtype, SCLC-A associated with high expression of ASCL1, is selectively sensitive to MAPK activation in vitro and in vivo through induction of cell-cycle arrest and senescence. We show strong upregulation of ERK negative feedback regulators and STAT signaling upon MAPK activation in SCLC-A lines. These findings provide insight into the complexity of signaling networks in SCLC and suggest subtype-specific mitogenic vulnerabilities.

4.
Cancer Discov ; 10(10): 1500-1513, 2020 10.
Article in English | MEDLINE | ID: mdl-32606137

ABSTRACT

The cell of origin of oncogenic transformation is a determinant of therapeutic sensitivity, but the mechanisms governing cell-of-origin-driven differences in therapeutic response have not been delineated. Leukemias initiating in hematopoietic stem cells (HSC) are less sensitive to chemotherapy and highly express the transcription factor MECOM (EVI1) compared with leukemias derived from myeloid progenitors. Here, we compared leukemias initiated in either HSCs or myeloid progenitors to reveal a novel function for EVI1 in modulating p53 protein abundance and activity. HSC-derived leukemias exhibit decreased apoptotic priming, attenuated p53 transcriptional output, and resistance to lysine-specific demethylase 1 (LSD1) inhibitors in addition to classical genotoxic stresses. p53 loss of function in Evi1 lo progenitor-derived leukemias induces resistance to LSD1 inhibition, and EVI1hi leukemias are sensitized to LSD1 inhibition by venetoclax. Our findings demonstrate a role for EVI1 in p53 wild-type cancers in reducing p53 function and provide a strategy to circumvent drug resistance in chemoresistant EVI1 hi acute myeloid leukemia. SIGNIFICANCE: We demonstrate that the cell of origin of leukemia initiation influences p53 activity and dictates therapeutic sensitivity to pharmacologic LSD1 inhibitors via the transcription factor EVI1. We show that drug resistance could be overcome in HSC-derived leukemias by combining LSD1 inhibition with venetoclax.See related commentary by Gu et al., p. 1445.This article is highlighted in the In This Issue feature, p. 1426.


Subject(s)
Gene Expression Regulation, Leukemic/genetics , Histone Demethylases/antagonists & inhibitors , Leukemia/physiopathology , Apoptosis , Humans , Transcription Factors
5.
Nature ; 559(7712): 125-129, 2018 07.
Article in English | MEDLINE | ID: mdl-29950729

ABSTRACT

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Subject(s)
Aminopyridines/pharmacology , Drug Resistance, Neoplasm/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutant Proteins/genetics , Mutation , Protein Multimerization/genetics , Triazines/pharmacology , Alleles , Allosteric Site/drug effects , Allosteric Site/genetics , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Progression , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Glutamine/genetics , Glutarates/blood , Glutarates/metabolism , HEK293 Cells , Humans , Isoleucine/genetics , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Inbred C57BL , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Triazines/chemistry , Triazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...