Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(15): 11295-11305, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38529645

ABSTRACT

Photochemical reactions enabling efficient transformation of aromatic systems into energetic but stable non-aromatic isomers have a long history in organic chemistry. One recently discovered reaction in this realm is that where derivatives of 1,2-azaborine, a compound isoelectronic with benzene in which two adjacent C atoms are replaced by B and N atoms, form the non-hexagon Dewar isomer. Here, we report quantum-chemical calculations that explain both why 1,2-azaborine is intrinsically more reactive toward Dewar formation than benzene, and how suitable substitutions at the B and N atoms are able to increase the corresponding quantum yield. We find that Dewar formation from 1,2-azaborine is favored by a pronounced driving force that benzene lacks, and that a large improvement in quantum yield arises when the reaction of substituted 1,2-azaborines proceeds without involvement of an intermediary ground-state species. Overall, we report new insights into making photochemical use of the Dewar isomers of aromatic compounds.

3.
J Org Chem ; 89(1): 16-26, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38060251

ABSTRACT

A hybrid molecular switch comprising salicylideneaniline (SA) and dithienylethene (DTE) moieties around a single benzene ring is reported. Due to an interplay between solvent-assisted enol-keto tautomerization in the former moiety and photochromic electrocyclization in the latter, this dithienylbenzene derivative was found to be photoresponsive at room temperature with a thermally stable closed form. The main photoproduct featuring ring-closed DTE and keto-enamine SA structures could be isolated and converted back to the starting material by irradiation with visible light. The optical properties of the potential structures involved in the overall process were characterized by using density functional theory (DFT) calculations in good agreement with the measured data. The reversibility of the conversion could be tuned by the presence of donor and acceptor substituents, while the introduction of the imine in the form of a benzothiazole moiety enabled photochemistry even in nonprotic solvents.

4.
Chemistry ; 30(2): e202303191, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37906675

ABSTRACT

The construction of molecular photogears that can achieve through-space transmission of the unidirectional double-bond rotary motion of light-driven molecular motors onto a remote single-bond axis is a formidable challenge in the field of artificial molecular machines. Here, we present a proof-of-principle design of such photogears that is based on the possibility of using stereogenic substituents to control both the relative stabilities of two helical forms of the photogear and the double-bond photoisomerization reaction that connects them. The potential of the design was verified by quantum-chemical modeling through which photogearing was found to be a favorable process compared to free-standing single-bond rotation ("slippage"). Overall, our study unveils a surprisingly simple approach to realizing unidirectional photogearing.

5.
ACS Catal ; 13(22): 14914-14927, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026817

ABSTRACT

Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted ß-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.

6.
Phys Chem Chem Phys ; 25(25): 16763-16771, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37338052

ABSTRACT

Excited-state aromaticity (ESA) and antiaromaticity (ESAA) are by now well-established concepts for explaining photophysical properties and photochemical reactivities of cyclic, conjugated molecules. However, their application is less straightforward than the corresponding process by which the thermal chemistry of such systems is rationalized in terms of ground-state aromaticity (GSA) and antiaromaticity (GSAA). Recognizing that the harmonic oscillator model of aromaticity (HOMA) provides an easy way to measure aromaticity on geometric grounds, it is therefore notable that this model is yet to be parameterized for excited states. Against this background, we here present a new parameterization of HOMA - termed HOMER - for the T1 state of both carbocyclic and heterocyclic compounds based on high-level quantum-chemical calculations. Considering CC, CN, NN and CO bonds and testing the parametrization using calculated magnetic data as reference, we find that the description of ESA and ESAA by HOMER is superior to that afforded by the original HOMA scheme, and that it reaches the same overall quality as HOMA does for GSA and GSAA. Furthermore, we demonstrate that the derived HOMER parameters can be used for predictive modeling of ESA and ESAA at very different levels of theory. Altogether, the results highlight the potential of HOMER to facilitate future studies of ESA and ESAA.

7.
J Org Chem ; 87(17): 11565-11571, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35997595

ABSTRACT

Quantum chemical calculations are performed to explore if the reactivity of diarylethene switches toward photocyclization can be controlled by the excited-state aromaticity of their bridging π-linker. Using an archetypal diarylethene with a non-aromatic π-linker as a reference, completely different outcomes are found when the π-linker is allowed to become either aromatic (no reaction) or antiaromatic (fast reaction) upon photoexcitation. The results demonstrate a possibility to use the excited-state aromaticity concept for actual modulation of photochemical reactivity.

8.
Phys Chem Chem Phys ; 24(30): 18103-18118, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35880631

ABSTRACT

Furylfulgides, a class of photochromic organic compounds, show a complex system of photoinduced reactions. In the present study, the excited-state dynamics of the Eα and Eß isomers of a representative furylfulgide is modelled with the use of nonadiabatic molecular dynamics simulations. Moreover, a pattern recognition algorithm is employed in order to automatically identify relaxation pathways, and to quantify the photoproduct distributions. The simulation results indicate that, despite differing only in the orientation of the furyl group, the two isomers show markedly different photochemical behaviour. The predominant Eα isomer undergoes photocyclisation with a quantum yield (QY) of 0.27 ± 0.10. For this isomer, the undesired E → Z photoisomerisation around the central double bond represents a minor side reaction, with a QY of 0.09 ± 0.07. In contrast, the minority Eß isomer, which is incapable of photocyclisation, undergoes efficient E → Z photoisomerisation, with a QY as high as 0.56 ± 0.14. The relaxation kinetics and the photoproduct distributions are interpreted in the light of the available experimental data.

9.
J Org Chem ; 87(15): 9532-9542, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849785

ABSTRACT

Photoinduced tuning of (anti)aromaticity and associated molecular properties is currently in the focus of attention for both tailoring photochemical reactivity and designing new materials. Here, we report on the synthesis and spectroscopic characterization of diarylethene-based molecular switches embedded in a biphenylene structure composed of rings with different levels of local (anti)aromaticity. We show that it is possible to modulate and control the (anti)aromatic character of each ring through reversible photoswitching of the aryl units of the system between open and closed forms. Remarkably, it is shown that the irreversible formation of an annulated bis(dihydro-thiopyran) side-product that hampers the photoswitching can be efficiently suppressed when the aryl core formed by thienyl groups in one switch is replaced by thiazolyl groups in another.


Subject(s)
Molecular Structure
10.
Phys Chem Chem Phys ; 24(19): 11496-11500, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35507952

ABSTRACT

The common approach to investigate the impact of aromaticity on excited-state proton transfer by probing the (anti)aromatic character of reactants and products alone is scrutinized by modelling such reactions involving 2-pyridone. Thereby, it is found that energy barriers can be strongly influenced by transient changes in aromaticity unaccounted for by this approach, particularly when the photoexcited state interacts with a second excited state. Overall, the modelling identifies a pronounced effect overlooked by most studies on this topic.

11.
J Phys Chem A ; 125(39): 8635-8648, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34550700

ABSTRACT

4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence-in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.

12.
J Org Chem ; 86(8): 5552-5559, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33784457

ABSTRACT

Synthetic molecular motors driven by E/Z photoisomerization reactions are able to produce unidirectional rotary motion because of a structural asymmetry that makes one direction of rotation more probable than the other. In most such motors, this asymmetry is realized through the incorporation of a chemically asymmetric carbon atom. Here, we present molecular dynamics simulations based on multiconfigurational quantum chemistry to investigate whether the merits of this approach can be equaled by an alternative approach that instead exploits isotopic chirality. By first considering an N-methylpyrrolidine-cyclopentadiene motor design, it is shown that isotopically chiral variants of this design undergo faster photoisomerizations than a chemically chiral counterpart, while maintaining rotary photoisomerization quantum yields of similarly high magnitude. However, by subsequently considering a pyrrolinium-cyclopentene design, it is also found that the introduction of isotopic chirality does not provide any control of the directionality of the photoinduced rotations within this framework. Taken together, the results highlight both the potential usefulness of isotopic rather than chemical chirality for the design of light-driven molecular motors, and the need for further studies to establish the exact structural circumstances under which this asymmetry is best exploited.


Subject(s)
Molecular Dynamics Simulation , Stereoisomerism
13.
Org Lett ; 22(18): 7113-7117, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32822192

ABSTRACT

Molecular dynamics simulations are performed to explore if isotopic chirality can induce unidirectional rotary motion in molecular motors operated through double-bond photoisomerizations. Using a high-quantum yield motor featuring a chemically asymmetric carbon atom as reference, it is found that isotopically chiral counterparts of this motor sustain such motion almost equally well. Overall, the study reveals a previously unexplored role for isotopic chirality in the design of rotary molecular motors.

14.
J Am Chem Soc ; 142(32): 13941-13953, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32666793

ABSTRACT

The concepts of excited-state aromaticity and antiaromaticity have in recent years with increasing frequency been invoked to rationalize the photochemistry of cyclic conjugated organic compounds, with the long-term goal of using these concepts to improve the reactivities of such compounds toward different photochemical transformations. In this regard, it is of particular interest to assess how the presence of a benzene motif affects photochemical reactivity, as benzene is well-known to completely change its aromatic character in its lowest excited states. Here, we investigate how a benzene motif influences the photoinduced electrocyclization of dithienylethenes, a major class of molecular switches. Specifically, we report on the synthesis of a dithienylbenzene switch where the typical nonaromatic, ethene-like motif bridging the two thienyl units is replaced by a benzene motif, and show that this compound undergoes electrocyclization upon irradiation with UV-light. Furthermore, through a detailed quantum chemical analysis, we demonstrate that the electrocyclization is driven jointly and synergistically by the loss of aromaticity in this motif from the formation of a reactive, antiaromatic excited state during the initial photoexcitation, and by the subsequent relief of this antiaromaticity as the reaction progresses from the Franck-Condon region. Overall, we conclude that photoinduced changes in aromaticity facilitate the electrocyclization of dithienylbenzene switches.

15.
J Comput Chem ; 41(18): 1718-1729, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32323870

ABSTRACT

In this work, we take a different angle to the benchmarking of time-dependent density functional theory (TD-DFT) for the calculation of excited-state geometries by extensively assessing how accurate such geometries are compared to ground-state geometries calculated with ordinary DFT. To this end, we consider 20 medium-sized aromatic organic compounds whose lowest singlet excited states are ideally suited for TD-DFT modeling and are very well described by the approximate coupled-cluster singles and doubles (CC2) method, and then use this method and six different density functionals (BP86, B3LYP, PBE0, M06-2X, CAM-B3LYP, and ωB97XD) to optimize the corresponding ground- and excited-state geometries. The results show that although each hybrid functional reproduces the CC2 excited-state bond lengths very satisfactorily, achieving an overall root mean square error of 0.011 Å for all 336 bonds in the 20 molecules, these errors are distinctly larger than those of only 0.004-0.006 Å with which the hybrid functionals reproduce the CC2 ground-state bond lengths. Furthermore, for each functional employed, the variation in the error relative to CC2 between different molecules is found to be much larger (by at least a factor of 3) for the excited-state geometries than for the ground-state geometries, despite the fact that the molecules/states under investigation have rather uniform chemical and spectroscopic character. Overall, the study finds that even in favorable circumstances, TD-DFT excited-state geometries appear intrinsically and comparatively less accurate than DFT ground-state ones.

16.
J Phys Chem A ; 124(11): 2193-2206, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32083861

ABSTRACT

The compound 4-(N,N-dimethylamino)benzonitrile (DMABN) represents the archetypal system for dual fluorescence, a rare photophysical phenomenon in which a given fluorophore shows two distinct emission bands. Despite extensive studies, the underlying mechanism remains the subject of debate. In the present contribution, we address this issue by simulating the excited-state relaxation process of DMABN as it occurs in polar solution. The potential energy surfaces for the system are constructed with the use of the additive quantum mechanics/molecular mechanics (QM/MM) method, and the coupled dynamics of the electronic wave function and the nuclei is propagated with the semiclassical fewest switches surface hopping method. The DMABN molecule, which comprises the QM subsystem, is treated with the use of the second-order algebraic diagrammatic construction (ADC(2)) method with the imposition of spin-opposite scaling (SOS). It is verified that this level of theory achieves a realistic description of the excited-state potential energy surfaces of DMABN. The simulation results qualitatively reproduce the main features of the experimentally observed fluorescence spectrum, thus allowing the unambiguous assignment of the two fluorescence bands: the normal band is due to the near-planar locally excited (LE) structure of DMABN, while the so-called "anomalous" second band arises from the twisted intramolecular charge transfer (TICT) structure. The transformation of the LE structure into the TICT structure takes place directly via intramolecular rotation, and is not mediated by another excited-state structure. In particular, the oft-discussed rehybridized intramolecular charge transfer (RICT) structure, which is characterized by a bent nitrile group, does not play a role in the relaxation process.

17.
J Phys Chem A ; 123(40): 8485-8495, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31513399

ABSTRACT

The performance of time-dependent density functional theory (TD-DFT) for the calculation of excited states of molecular systems has been the subject of many benchmark studies. Often, these studies focus on excitation energies or, more recently, excited-state equilibrium geometries. In this work, we take a different angle by instead exploring how well TD-DFT reproduces experimental free-energy barriers of a well-known photochemical reaction: the excited-state proton transfer (ESPT) in indigo. Specifically, by exploiting the possibility of using TD-DFT to locate and compute free energies of first-order saddle points in excited states, we test the performance of several popular density functionals in reproducing recently determined experimental free-energy barriers for ESPT in indigo and in an N-hexyl substituted derivative thereof. Through the calculations, it is found that all of the tested functionals perform quite well, uniformly overestimating the experimental values by 1.4-3.5 (mean error) and 2.5-5.5 kcal mol-1 (maximum error) only. Given that these errors are not larger than those typically observed when barriers for ground-state proton transfer reactions are calculated in ground-state DFT, the results highlight the potential of TD-DFT to enable accurate modeling of ESPT reactions based on free energies and explicit localization of transition states.

18.
J Phys Chem A ; 123(31): 6660-6673, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31294983

ABSTRACT

Donor-acceptor systems based on fulvene as the electron-accepting moiety are typified by exotic, strongly polar electronic structures. In this contribution, ab initio calculations have been performed to explore the ground- and excited-state properties of an archetypal compound of this class, which incorporates the exocyclic carbon atom of fulvene into a tetramethylimidazoline-like five-membered ring. In the electronic ground state, the compound under study has a pronounced zwitterionic character and is best described as consisting of a negatively charged cyclopentadienyl ring linked covalently to a positively charged tetramethylimidazolium ring. Both of these rings can be considered as aromatic. The excess negative charge localized on the cyclopentadienyl ring is highly labile in the photochemical sense: the low-lying valence excited states exhibit varying degrees of reverse charge transfer, whereby electron density is transferred from the cyclopentadienyl ring back onto the tetramethylimidazolium ring. The topographies of the excited-state potential energy surfaces favor rapid and efficient internal conversion at an extended, fulvene-like S1/S0 conical intersection seam. As a consequence, the excited-state lifetime of this compound is predicted to be on the order of 100 fs.

19.
Chemphyschem ; 19(22): 3001-3009, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30183138

ABSTRACT

Two analogues to the fluorescent amyloid probe 2,5-bis(4'-hydroxy-3'-carboxy-styryl)benzene (X-34) were synthesized based on the trans-stilbene pyrene scaffold (Py1SA and Py2SA). The compounds show strikingly different emission spectra when bound to preformed Aß1-42 fibrils. This remarkable emission difference is retained when bound to amyloid fibrils of four distinct proteins, suggesting a common binding configuration for each molecule. Density functional theory calculations show that Py1SA is twisted, while Py2SA is more planar. Still, an analysis of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of the two compounds indicates that the degree of electronic coupling between the pyrene and salicylic acid (SA) moieties is larger in Py1SA than in Py2SA. Excited state intramolecular proton transfer (ESIPT) coupled-charge transfer (ICT) was observed for the anionic form in polar solvents. We conclude that ICT properties of trans-stilbene derivatives can be utilized for amyloid probe design with large changes in emission spectra and decay times from analogous chemical structures depending on the detailed physical nature of the binding site.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Protons , Pyrenes/chemistry , Salicylates/chemistry , Stilbenes/chemistry , Density Functional Theory , Fluorescence , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/radiation effects , Light , Models, Chemical , Molecular Structure , Protein Multimerization , Pyrenes/chemical synthesis , Pyrenes/radiation effects , Salicylates/chemical synthesis , Salicylates/radiation effects , Stilbenes/chemical synthesis , Stilbenes/radiation effects
20.
ChemistryOpen ; 7(8): 583-589, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30083493

ABSTRACT

A key goal in the development of light-driven rotary molecular motors is to facilitate their usage in biology and medicine by shifting the required irradiation wavelengths from the UV regime to the nondestructive visible regime. Although some progress has been made toward this goal, most available visible-light-driven motors either have relatively low quantum yields or require that thermal steps follow the photoisomerizations that underlie the rotary motion. Here, a minimal design for visible-light-driven motors without these drawbacks is presented and evaluated on the basis of state-of-the-art quantum chemical calculations and molecular dynamics simulations. The design, featuring dihydropyridinium and cyclohexenylidene motifs and comprising only five conjugated double bonds, is found to produce a full 360° rotation through fast photoisomerizations (excited-state lifetimes of ≈170-250 fs) powered by photons with energies well below 3 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...