Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Article in English | MEDLINE | ID: mdl-38806246

ABSTRACT

The quest for effective cancer therapeutics has traditionally centered on targeting mutated or overexpressed oncogenic proteins. However, challenges arise in cancers with low mutational burden or when the mutated oncogene is not conventionally targetable, which are common situations in childhood cancers. This obstacle has sparked large-scale unbiased screens to identify collateral genetic dependencies crucial for cancer cell growth. These screens have revealed promising targets for therapeutic intervention in the form of lineage-selective dependency genes, which may have an expanded therapeutic window compared to pan-lethal dependencies. Many lineage-selective dependencies regulate gene expression and are closely tied to the developmental origins of pediatric tumors. Placing lineage-selective dependencies in a transcriptional network model is helpful for understanding their roles in driving malignant cell behaviors. Here, we discuss the identification of lineage-selective dependencies and how two transcriptional models, core regulatory circuits and gene regulatory networks, can serve as frameworks for understanding their individual and collective actions, particularly in cancers affecting children and young adults.

2.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664416

ABSTRACT

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Subject(s)
E1A-Associated p300 Protein , Gene Regulatory Networks , Medulloblastoma , Humans , Medulloblastoma/genetics , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Medulloblastoma/pathology , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/antagonists & inhibitors , Cell Line, Tumor , Gene Regulatory Networks/drug effects , Animals , Protein Domains , Gene Expression Regulation, Neoplastic/drug effects , Mice , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Antineoplastic Agents/pharmacology
3.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508144

ABSTRACT

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Subject(s)
Histone Demethylases , Neuroblastoma , Humans , N-Myc Proto-Oncogene Protein/genetics , Cell Line, Tumor , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Oncogene Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics
4.
Cell Rep Med ; 5(3): 101472, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508140

ABSTRACT

Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Signal Transduction , Adult , Child , Humans , Signal Transduction/genetics , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , STAT3 Transcription Factor/genetics
5.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260418

ABSTRACT

Neuroblastoma remains a formidable challenge in pediatric oncology, representing 15% of cancer-related mortalities in children. Despite advancements in combinatorial and targeted treatments improving survival rates, nearly 50% of patients with high-risk neuroblastoma will ultimately succumb to their disease. Dysregulation of the epithelial-mesenchymal transition (EMT) is a key mechanism of tumor cell dissemination, resulting in metastasis and poor outcomes in many cancers. Our prior work identified PRMT5 as a key regulator of EMT via methylation of AKT at arginine 15, enhancing the expression of EMT-driving transcription factors and facilitating metastasis. Here, we identify that PRMT5 directly regulates the transcription of the epidermal growth factor receptor (EGFR). PRMT5, through independent modulation of the EGFR and AKT pathways, orchestrates the activation of NFκB, resulting in the upregulation of the pro-EMT transcription factors ZEB1, SNAIL, and TWIST1. Notably, EGFR and AKT form a compensatory feedback loop, reinforcing the expression of these EMT transcription factors. Small molecule inhibition of PRMT5 methyltransferase activity disrupts EGFR/AKT signaling, suppresses EMT transcription factor expression and ablates tumor growth in vivo . Our findings underscore the pivotal role of PRMT5 in the control of the EMT program in high-risk neuroblastoma.

6.
Nat Commun ; 14(1): 7332, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957169

ABSTRACT

Combination chemotherapy is crucial for successfully treating cancer. However, the enormous number of possible drug combinations means discovering safe and effective combinations remains a significant challenge. To improve this process, we conduct large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the most common extracranial pediatric solid tumor, where ~50% of high-risk patients do not survive. Our screen examines all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest existing drug combination screens. Using dense drug-drug rescreening, we find that the top CRISPR-nominated drug combinations are more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discover that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicin in vitro and in vivo using patient-derived xenograft (PDX) models. Our findings provide a valuable resource and demonstrate the feasibility of using targeted CRISPR knockout to discover combinations with common chemotherapeutics, a methodology with application across all cancers.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neuroblastoma , Humans , Child , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Gene Knockout Techniques , Drug Combinations , Cell Line, Tumor
7.
Nat Struct Mol Biol ; 30(8): 1160-1171, 2023 08.
Article in English | MEDLINE | ID: mdl-37488358

ABSTRACT

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.


Subject(s)
Multiple Myeloma , Neuroblastoma , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Multiple Myeloma/genetics , Gene Expression Regulation , Nucleosomes , Neuroblastoma/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism
8.
Nat Commun ; 14(1): 4003, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414763

ABSTRACT

A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Animals , Mice , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line , Oncogenes , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics
9.
bioRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37163075

ABSTRACT

Mutations in the epigenetic regulator and global transcriptional activator, E1A binding protein (EP300), is being increasingly reported in aggressive hematological malignancies including adult T-cell leukemia/lymphoma (ATLL). However, the mechanistic contribution of EP300 dysregulation to cancer initiation and progression are currently unknown. Independent inhibition of EP300 in human cells results in the differential expression of genes involved in regulating the cell cycle, DNA replication and DNA damage response. Nevertheless, specific function played by EP300 in DNA replication initiation, progression and replication fork integrity has not been studied. Here, using ATLL cells as a model to study EP300 deficiency and an p300-selective PROTAC degrader, degrader as a pharmacologic tool, we reveal that EP300-mutated cells display prolonged cell cycle kinetics, due to pronounced dysregulations in DNA replication dynamics leading to persistent genomic instability. Aberrant DNA replication in EP300-mutated cells is characterized by elevated replication origin firing due to increased replisome pausing genome-wide. We demonstrate that EP300 deficiency results in nucleolytic degradation of nascently synthesized DNA at stalled forks due to a prominent defect in fork stabilization and protection. This in turn results in the accumulation of single stranded DNA gaps at collapsed replication forks, in EP300-deficient cells. Inhibition of Mre11 nuclease rescues the ssDNA accumulation indicating a dysregulation in downstream mechanisms that restrain nuclease activity at stalled forks. Importantly, we find that the absence of EP300 results in decreased expression of BRCA2 protein expression and a dependency on POLD3-mediated error-prone replication restart mechanisms. The overall S-phase abnormalities observed lead to under-replicated DNA in G2/M that instigates mitotic DNA synthesis. This in turn is associated with mitotic segregation defects characterized by elevated micronuclei formation, accumulation of cytosolic DNA and transmission of unrepaired inherited DNA lesions in the subsequent G1-phase in EP300-deficient cells. We demonstrate that the DNA replication dynamics of EP300-mutated cells ATLL cells recapitulate features of BRCA-deficient cancers. Altogether these results suggest that mutations in EP300 cause chronic DNA replication stress and defective replication fork restart results in persistent genomic instability that underlie aggressive chemo-resistant tumorigenesis in humans.

10.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37183825

ABSTRACT

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like mesenchymal cell state and a more differentiated sympathetic adrenergic cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional cofactor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism, G/T, that affects a GATA motif in the first intron of LMO1. Here, we showed that WT zebrafish with the GATA genotype developed adrenergic neuroblastoma, while knock-in of the protective TATA allele at this locus reduced the penetrance of MYCN-driven tumors, which were restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrated that TATA/TATA tumors also exhibited a mesenchymal cell state and were low risk at diagnosis. Thus, conversion of the regulatory GATA to a TATA allele in the first intron of LMO1 reduced the neuroblastoma-initiation rate by preventing formation of the adrenergic cell state. This mechanism was conserved over 400 million years of evolution, separating zebrafish and humans.


Subject(s)
Genetic Predisposition to Disease , Neuroblastoma , Animals , Child , Humans , Zebrafish/genetics , Zebrafish/metabolism , Adrenergic Agents , Genotype , Neuroblastoma/pathology , N-Myc Proto-Oncogene Protein/genetics
11.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909587

ABSTRACT

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like "mesenchymal" cell state and a more differentiated sympathetic "adrenergic" cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional co-factor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism G/T that affects a G ATA motif in the first intron of LMO1. Here we show that wild-type zebrafish with the G ATA genotype develop adrenergic neuroblastoma, while knock-in of the protective T ATA allele at this locus reduces the penetrance of MYCN-driven tumors, which are restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrates that T ATA/ T ATA tumors also exhibit a mesenchymal cell state and are low risk at diagnosis. Thus, conversion of the regulatory G ATA to a T ATA allele in the first intron of LMO1 reduces the neuroblastoma initiation rate by preventing formation of the adrenergic cell state, a mechanism that is conserved over 400 million years of evolution separating zebrafish and humans.

13.
Cell Rep Med ; 3(5): 100632, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584622

ABSTRACT

Cell state is controlled by master transcription factors (mTFs) that determine the cellular gene expression program. Cancer cells acquire dysregulated gene expression programs by mutational and non-mutational processes. Intratumoral heterogeneity can result from cells displaying distinct mTF-regulated cell states, which co-exist within the tumor. One archetypal tumor associated with transcriptionally regulated heterogeneity is high-risk neuroblastoma (NB). Patients with NB have poor overall survival despite intensive therapies, and relapsed patients are commonly refractory to treatment. The cellular populations that comprise NB are marked by different cohorts of mTFs and differential sensitivity to conventional therapies. Recent studies have highlighted mechanisms by which NB cells dynamically shift the cell state with treatment, revealing new opportunities to control the cellular response to treatment by manipulating cell-state-defining transcriptional programs. Here, we review recent advances in understanding transcriptionally defined cancer heterogeneity. We offer challenges to the field to encourage translation of basic science into clinical benefit.


Subject(s)
Neuroblastoma , Humans , Neuroblastoma/genetics , Transcription Factors/genetics
14.
Cell Rep ; 38(5): 110323, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108532

ABSTRACT

Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.


Subject(s)
Homeodomain Proteins/metabolism , Muscle Development/genetics , Rhabdomyosarcoma/genetics , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Neoplastic/genetics , Mice , Muscle Development/physiology , MyoD Protein/metabolism , Myogenin/metabolism , Oncogene Proteins, Fusion/metabolism , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma, Embryonal , Zebrafish
15.
Cancer Discov ; 12(3): 730-751, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34772733

ABSTRACT

Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2ß, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE: EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2ß. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Neuroblastoma , Regulatory Sequences, Nucleic Acid , Acetylation , Child , E1A-Associated p300 Protein/genetics , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Oncogenes
16.
Sci Adv ; 7(43): eabe0834, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34669465

ABSTRACT

Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that collaborate with MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation. Here, we show that when MYCN-amplified neuroblastoma cells are treated with retinoic acid, histone H3K27 acetylation and methylation become redistributed to decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of MEIS1 and SOX4 expression. These findings indicate that treatment with retinoids can reprogram the enhancer landscape, resulting in down-regulation of MYCN expression, while establishing a new retino-sympathetic CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids in high-risk neuroblastoma and explain the rapid down-regulation of expression of MYCN despite massive levels of amplification of this gene.

17.
Cancers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638267

ABSTRACT

Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma.

19.
Blood Cancer Discov ; 2(4): 370-387, 2021 07.
Article in English | MEDLINE | ID: mdl-34258103

ABSTRACT

Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.


Subject(s)
Lysine , Multiple Myeloma , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinases/metabolism , Genes, cdc , Humans , Methylation , Multiple Myeloma/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II , Retinoblastoma-Binding Protein 2 , Cyclin-Dependent Kinase-Activating Kinase
20.
Nat Genet ; 53(4): 529-538, 2021 04.
Article in English | MEDLINE | ID: mdl-33753930

ABSTRACT

Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.


Subject(s)
Chromosome Mapping/methods , Gene Expression Regulation, Neoplastic , Genome, Human , Mutation , Neoplasm Proteins/genetics , Neoplasms/genetics , Adult , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Child , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...