Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(3): 109166, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433895

ABSTRACT

Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.

2.
Glia ; 71(5): 1278-1293, 2023 05.
Article in English | MEDLINE | ID: mdl-36680780

ABSTRACT

Efforts to understand microglia function in health and diseases have been hindered by the lack of culture models that recapitulate in situ cellular properties. In recent years, the use of serum-free media with brain-derived growth factors (colony stimulating factor 1 receptor [CSF1R] ligands and TGF-ß1/2) have been favored for the maintenance of rodent microglia as they promote morphological features observed in situ. Here we study the functional and transcriptomic impacts of such media on human microglia (hMGL). Media formulation had little impact on microglia transcriptome assessed by RNA sequencing which was sufficient to significantly alter microglia capacity to phagocytose myelin debris and to elicit an inflammatory response to lipopolysaccharide. When compared to immediately ex vivo microglia from the same donors, the addition of fetal bovine serum to culture media, but not growth factors, was found to aid in the maintenance of key signature genes including those involved in phagocytic processes. A phenotypic shift characterized by CSF1R downregulation in culture correlated with a lack of reliance on CSF1R signaling for survival. Consequently, no improvement in cell survival was observed following culture supplementation with CSF1R ligands. Our study provides better understanding of hMGL in culture, with observations that diverge from those previously made in rodent microglia.


Subject(s)
Microglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Microglia/metabolism , Culture Media/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Receptors, Colony-Stimulating Factor/metabolism
3.
Transl Neurodegener ; 11(1): 56, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575535

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Amyotrophic Lateral Sclerosis/pathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Motor Neurons/pathology , Synaptic Transmission , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...