Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(34): 51951-51963, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35257340

ABSTRACT

Local environmental factors and dispersal-based processes can both influence the structure of metacommunities in freshwater ecosystems. Describing these patterns is especially important for biomonitoring approaches that are based on inferences made from benthic macroinvertebrate assemblages. Here, we examine the metacommunity structure of chironomid assemblages collected from 28 sampling stations along the Southern Morava River, Serbia. We examined the extent of dispersal-based processes along a temporal scale. We obtained 8 models for the different sampling seasons that determined the spatial variables that best explained variability in chironomid assemblages. Spatial processes were found to be a significant predictor of variation for chironomids during the late winter/spring (March and May) and autumn (October and November), concordant with the known phenology of common taxa. Species sorting and mass effects were found to be significant processes that structured the chironomid metacommunity. In addition, biological interactions, inferred from fish biomass, and habitat traits, demonstrated by macrophyte and riparian vegetation, were found to influence species sorting. A high variability of chironomid metacommunity structure across sampling seasons suggests that monitoring programs that include macroinvertebrates in bioassessment should avoid months with pronounced spatial processes, and consequently maximize a correlation between community structure and local environmental factors.


Subject(s)
Animal Distribution , Chironomidae , Ecosystem , Animals , Rivers , Seasons
2.
Chemosphere ; 211: 489-499, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30081221

ABSTRACT

The present study was carried out in order to assess the influence of environmentally relevant concentrations of TiO2 nanoparticles (E171 human food grade) toxicity on the freshwater midge Chironomus tentans. Tested concentrations were 125, 250, 500, 1000, 2000 and 4000 mg of E171 TiO2 per 1 kg of sediment, for the experiment aiming at life trait toxicity observation; and 2.5, 25 and 250 mg of E171 TiO2 per 1 kg of sediment for the experiment aiming at mouthpart deformity observation. The experimental design was constructed for the sediment dwelling chironomid larvae according to OECD guidelines. For the first time, a geometric morphometric approach was used to assess the deformities in chironomid larvae as sublethal implications of nanoparticle exposure. The present study showed a concentration-response relationship between the TiO2 concentration in the substrate and the TiO2 intake. The mortality and emergence ratio was affected at concentrations >1000 mg/kg. Geometric Morphometrics revealed the tendency of the mentum teeth to narrow and elongate and the mandibles to widen, as well as the loss of the first inner tooth, with a TiO2 concentration rise. The variability of morphological changes observed in the mouthparts indicates that C. tentans could be used as a bioindicator in nano-TiO2 monitoring.


Subject(s)
Chironomidae/drug effects , Nanoparticles/adverse effects , Titanium/chemistry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...