Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
J Phys Chem Lett ; 13(36): 8502-8508, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36066503

ABSTRACT

Crystallization from solution often occurs via "nonclassical" routes; that is, it involves transient, non-crystalline states like reactant-rich liquid droplets and amorphous particles. However, in mineral crystals, the well-defined thermodynamic character of liquid droplets and whether they convert─or not─into amorphous phases have remained unassessed. Here, by combining cryo-transmission electron microscopy and X-ray scattering down to a 250 ms reaction time, we unveil that crystallization of cerium oxalate involves a metastable chemical equilibrium between transient liquid droplets and solid amorphous particles: contrary to the usual expectation, reactant-rich droplets do not evolve into amorphous solids. Instead, at concentrations above 2.5 to 10 mmol L-1, both amorphous and reactant-rich liquid phases coexist for several tens of seconds and their molar fractions remain constant and follow the lever rule in a multicomponent phase diagram. Such a metastable chemical equilibrium between solid and liquid precursors has been so far overlooked in multistep nucleation theories and highlights the interest of rationalizing phase transformations using multicomponent phase diagrams not only when designing and recycling rare earths materials but also more generally when describing nonclassical crystallization.

2.
Nano Lett ; 22(1): 29-35, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34928165

ABSTRACT

Intense research on nanocrystals synthesized in solution is motivated by their original physical properties, which are determined by their sizes and shapes on various scales. However, morphology control on the nanoscale is limited by our understanding of crystallization, which is challenged by the now well-established prevalence of noncrystalline intermediates. In particular, the impact of such intermediates on the final sizes and crystal quality remains unclear because the characterization of their evolution on the nanometer and millisecond scales with nonperturbative analyses has remained a challenge. Here we use in situ X-ray scattering to show that the nucleation and growth of YVO4:Eu nanocrystals is spatially restrained within amorphous, nanometer-scaled intermediates. The reactivity and size of these amorphous intermediates determine (i) the mono versus polycrystalline character of final crystals and (ii) the size of final crystals. This implies that designing amorphous intermediates themselves that form in <6 ms is one of the keys to controlled bottom-up syntheses of optimized nanoparticles.


Subject(s)
Nanoparticles , Crystallization , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...