Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 99(20): 200401, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233122

ABSTRACT

We discuss using a tabletop ion interferometer to search for deviations from Coulomb's inverse-square law. Such deviations would result from nonclassical effects such as a nonzero photon rest mass. We discuss the theory behind the proposed measurement, explain which fundamental, experimentally controllable parameters are the relevant figures of merit, and calculate the expected performance of such a device in terms of these parameters. The sensitivity to deviations in the exponent of the inverse-square law is predicted to be a few times 10(-22), an improvement by 5 orders of magnitude over current experiments. It could measure a nonzero photon rest mass smaller than 9 x 10(-50) grams, nearly 100 times smaller than current laboratory experiments.

2.
Phys Rev Lett ; 97(24): 240801, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280264

ABSTRACT

We report the first demonstration of a matter-wave interference gyroscope that meets both the short-term noise and long-term stability requirements for high accuracy navigation. This performance level resulted from implementation of a novel technique to precisely reverse the input axis of the gyroscope.

3.
Phys Rev Lett ; 95(23): 235001, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16384310

ABSTRACT

We report new detailed density profile measurements in expanding strongly coupled neutral calcium plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10(5) to 10(9) cm(-3) to with a time resolution limit as small as 7 ns. Strong coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong coupling at late times is presented, confirming a recent theoretical result.

4.
J Xray Sci Technol ; 5(1): 20-8, 1995 Jan 01.
Article in English | MEDLINE | ID: mdl-21307474

ABSTRACT

The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor.

SELECTION OF CITATIONS
SEARCH DETAIL