Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 29(2): 453-463.e3, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31597103

ABSTRACT

A wide variety of multicellular organisms across the kingdoms display remarkable ability to restore their tissues or organs when they suffer damage. However, the ability to repair damage is not uniformly distributed throughout body parts. Here, we unravel the elusive mechanistic basis of boundaries on organ regeneration potential using root tip resection as a model and show that the dosage of gradient-expressed PLT2 transcription factor is the underlying cause. While transient downregulation of PLT2 in distinct set of plt mutant backgrounds renders meristematic cells incapable of regeneration, forced expression of PLT2 acts through auto-activation to confer regeneration potential to the cells undergoing differentiation. Surprisingly, sustained exposure to nuclear PLT2, beyond a threshold, leads to reduction of regeneration potential despite giving rise to longer meristem. Our studies reveal dosage-dependent role of gradient-expressed PLT2 in root tip regeneration and uncouple the size of an organ from its regeneration potential.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Organogenesis/genetics , Regeneration/physiology , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Transcription Factors/metabolism
2.
Curr Opin Plant Biol ; 41: 23-31, 2018 02.
Article in English | MEDLINE | ID: mdl-28843861

ABSTRACT

Plants display an extraordinary ability to regenerate complete shoot systems from a tissue fragment or even from a single cell. Upregulation of the determinants of pluripotency during a precise window of time in response to external inductive cues is a key decisive factor for shoot regeneration. A burst of recent studies has begun to provide an understanding of signaling molecules that are instrumental in the making of the regenerative mass, as well as the developmental regulators that are seminal in shaping the pluripotent state. Here, we discuss how signaling molecules, waves of mutually exclusive stem cell regulators and epigenetic modifiers could contribute to cellular heterogeneity in an island of regenerative mass, thus leading to de novo shoot regeneration.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Plant , Plant Shoots/physiology , Plants/genetics , Signal Transduction , Plant Roots/physiology , Regeneration/genetics , Up-Regulation
3.
Curr Biol ; 25(8): 1017-30, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25819565

ABSTRACT

Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate a complete fertile shoot system after inductive cues, the mechanisms by which cells acquire pluripotency and subsequently regenerate complete organs remain unknown. Here, we show that three PLETHORA (PLT) genes, PLT3, PLT5, and PLT7, regulate de novo shoot regeneration in Arabidopsis by controlling two distinct developmental events. Cumulative loss of function of these three genes causes the intermediate cell mass, callus, to be incompetent to form shoot progenitors, whereas induction of PLT5 or PLT7 can render shoot regeneration hormone-independent. We further show that PLT3, PLT5, and PLT7 establish pluripotency by activating root stem cell regulators PLT1 and PLT2, as reconstitution of either PLT1 or PLT2 in the plt3; plt5-2; plt7 mutant re-established the competence to regenerate shoot progenitor cells but did not lead to the completion of shoot regeneration. PLT3, PLT5, and PLT7 additionally regulate and require the shoot-promoting factor CUP-SHAPED COTYLEDON2 (CUC2) to complete the shoot-formation program. Our findings uncouple the acquisition of competence to regenerate shoot progenitor cells from completion of shoot formation, indicating a two-step mechanism of de novo shoot regeneration that operates in all tested plant tissues irrespective of their origin. Our studies reveal intermediate developmental phases of regeneration and provide a deeper understanding into the mechanistic basis of regeneration.


Subject(s)
Arabidopsis Proteins/metabolism , Plant Roots/cytology , Plant Shoots/cytology , Regeneration/genetics , Stem Cells/cytology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Regeneration/physiology , Stem Cells/metabolism , Transcription Factors/metabolism
4.
Front Plant Sci ; 5: 142, 2014.
Article in English | MEDLINE | ID: mdl-24782880

ABSTRACT

The ability to regenerate is widely exploited by multitudes of organisms ranging from unicellular bacteria to multicellular plants for their propagation and repair. But the levels of competence for regeneration vary from species to species. While variety of living cells of a plant display regeneration ability, only a few set of cells maintain their stemness in mammals. This highly pliable nature of plant cells in-terms of regeneration can be attributed to their high developmental plasticity. De novo organ initiation can be relatively easily achieved in plants by proper hormonal regulations. Elevated levels of plant hormone auxin induces the formation of proliferating mass of pluripotent cells called callus, which predominantly express lateral root meristem markers and hence is having an identity similar to lateral root primordia. Organ formation can be induced from the callus by modulating the ratio of hormones. An alternative for de novo organogenesis is by the forced expression of plant specific transcription factors. The mechanisms by which plant cells attain competence for regeneration on hormonal treatment or forced expression remain largely elusive. Recent studies have provided some insight into how the epigenetic modifications in plants affect this competence. In this review we discuss the present understanding of regenerative biology in plants and scrutinize the future prospectives of this topic. While discussing about the regeneration in the sporophyte of angiosperms which is well studied, here we outline the regenerative biology of the gametophytic phase and discuss about various strategies of regeneration that have evolved in the domain of life so that a common consensus on the entire process of regeneration can be made.

SELECTION OF CITATIONS
SEARCH DETAIL
...