Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 142: 109678, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33220866

ABSTRACT

Saccharification of cellulosic biomass for the fermentation of transportation fuels faces several challenges. Cellulose is highly stable, and even with enzymatic assistance, decomposition of cellulose is slow. Additionally, the enzymes are expensive and sensitive to thermal and mechanical inactivation. In this work, we studied the effects of moderate electric field (MEF, in the range from 1 to 1000 V per cm) treatments on the effectiveness of enzymatic saccharification. MEF treatments were applied to determine their effects on enzyme activity. We considered the effects of field strength, frequency, application regime and temperature. It was found that the enzyme responded to alterations in the frequency of the waveform, with 50 to 60 Hz maximizing the effects of the field, although the effects of field strength and application regime were more significant. It was found that the electric field could have a positive, negative, or negligible effect depending on the field strength. Most notably, when MEF treatments were applied over a range of temperatures, it was found that MEF treatment significantly improved enzyme activity at lower temperatures, leading to the observation that MEF treatment imitates a temperature increase. Calculations simulating the electrophoretic motion of the enzymes verified that the magnitude of motion associated with the MEF treatments was qualitatively similar to the change in molecular motion associated with temperature increases.


Subject(s)
Cellulase , Cellulose , Biomass , Cellulase/metabolism , Cellulose/metabolism , Fermentation , Hydrolysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...