Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Neurotherapeutics ; 21(3): e00352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38636309

ABSTRACT

The blood-brain barrier (BBB) presents a formidable challenge in delivering therapeutic agents to the central nervous system. Ultrasound-mediated BBB disruption has emerged as a promising non-invasive technique to enhance drug delivery to the brain. This manuscript reviews fundamental principles of ultrasound-based techniques and their mechanisms of action in temporarily permeabilizing the BBB. Clinical trials employing ultrasound for BBB disruption are discussed, summarizing diverse applications ranging from the treatment of neurodegenerative diseases to targeted drug delivery for brain tumors. The review also addresses safety considerations, outlining the current understanding of potential risks and mitigation strategies associated with ultrasound exposure, including real-time monitoring and assessment of treatment efficacy. Among the large number of studies, significant successes are highlighted thus providing perspective on the future direction of the field.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Blood-Brain Barrier/radiation effects , Humans , Drug Delivery Systems/methods , Animals , Ultrasonic Therapy/methods
2.
Pharmaceutics ; 15(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140098

ABSTRACT

CPZEN-45 is a novel compound with activity against drug-susceptible and drug-resistant tuberculosis (TB). The present study was undertaken to determine the best dose and dosing regimen of inhalable CPZEN-45 powders to use in efficacy studies with TB-infected guinea pigs. The disposition of CPZEN-45 after intravenous, subcutaneous (SC), and direct pulmonary administration (INS) was first determined to obtain their basal pharmacokinetic (PK) parameters. Then, the disposition of CPZEN-45 powders after passive inhalation using consecutive and sequential doses was evaluated. Plasma concentration versus time curves and PK parameters indicated that the absorption of CPZEN-45 after INS was faster than after SC administration (Ka = 12.94 ± 5.66 h-1 and 1.23 ± 0.55 h-1, respectively), had a longer half-life (2.06 ± 1.01 h versus 0.76 ± 0.22 h) and had higher bioavailability (67.78% and 47.73%, respectively). The plasma concentration versus time profiles and the lung tissue concentration at the end of the study period were not proportional to the dose size after one, two, and three consecutive passive inhalation doses. Three sequential passive inhalation doses maintained therapeutic concentration levels in plasma and lung tissue for a longer time than three consecutive doses (10 h vs. 3 h, respectively). Future studies to evaluate the efficacy of inhaled CPZEN-45 powders should employ sequential doses of the powder, with one nominal dose administered to animals three times per day.

3.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(11): 1554-1562, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37561617

ABSTRACT

Acoustic hologram (AH) lenses are typically produced by high-resolution 3-D printing methods, such as stereolithography (SLA) printing. However, SLA printing of thin, plate-shaped lens structures has major limitations, including vulnerability to deformation during photocuring and limited control of acoustic impedance. To overcome these limitations, we demonstrated a nanoparticle-epoxy composite (NPEC) molding technique, and we tested its feasibility for AH lens fabrication. The characterized acoustic impedance of the 22.5% NPEC was 4.64 MRayl, which is 55% higher than the clear photopolymer (2.99 MRayl) used by SLA. Simulations demonstrated that the improved pressure transmission by the higher acoustic impedance of the NPEC resulted in 21% higher pressure amplitude in the region of interest (ROI, -6-dB pressure amplitude pixels) than the photopolymer. This improvement was experimentally demonstrated after prototyping NPEC lenses through a molding process. The NPEC lens showed no significant deformation and 72% lower thickness profile errors than the photopolymer, which otherwise experienced deformed edges due to thermal bending. Beam mapping results using the NPEC lens validated the predicted improvement, demonstrating 24% increased pressure amplitude on average and 10% improved structural similarity (SSIM) with the simulated pressure pattern compared to the photopolymer lens. This method can be used for AH lens applications with improved pressure output and accurate pressure field formation.

4.
Ultrasound Med Biol ; 49(8): 1861-1866, 2023 08.
Article in English | MEDLINE | ID: mdl-37246050

ABSTRACT

OBJECTIVE: For the treatment of tumor hypoxia, microbubbles comprising oxygen as a majority component of the gas core with a stabilizing shell may be used to deliver and release oxygen locally at the tumor site through ultrasound destruction. Previous work has revealed differences in circulation half-life in vivo for perfluorocarbon-filled microbubbles, typically used as ultrasound imaging contrast agents, as a function of anesthetic carrier gas. These differences in circulation time in vivo were likely due to gas diffusion as a function of anesthetic carrier gas, among other variables. This work has motivated studies to evaluate the effect of anesthetic carrier gas on oxygen microbubble circulation dynamics. METHODS: Circulation time for oxygen microbubbles was derived from ultrasound image intensity obtained during longitudinal kidney imaging. Studies were constructed for rats anesthetized on inhaled isoflurane with either pure oxygen or medical air as the anesthetic carrier gas. RESULTS: Results indicated that oxygen microbubbles were highly visible via contrast-specific imaging. Marked signal enhancement and duration differences were observed between animals breathing air and oxygen. Perhaps counterintuitively, oxygen microbubbles disappeared from circulation significantly faster when the animals were breathing pure oxygen compared with medical air. This may be explained by nitrogen counterdiffusion from blood into the bubble, effectively changing the gas composition of the core, as has been observed in perfluorocarbon core microbubbles. CONCLUSION: Our findings suggest that the apparent longevity and persistence of oxygen microbubbles in circulation may not be reflective of oxygen delivery when the animal is anesthetized breathing air.


Subject(s)
Anesthetics , Fluorocarbons , Rats , Animals , Oxygen , Phospholipids , Microbubbles , Ultrasonography , Contrast Media
5.
Cell Chem Biol ; 30(5): 513-526.e5, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37148883

ABSTRACT

Chronic wounds frequently become infected with bacterial biofilms which respond poorly to antibiotic therapy. Aminoglycoside antibiotics are ineffective at treating deep-seated wound infections due to poor drug penetration, poor drug uptake into persister cells, and widespread antibiotic resistance. In this study, we combat the two major barriers to successful aminoglycoside treatment against a biofilm-infected wound: limited antibiotic uptake and limited biofilm penetration. To combat the limited antibiotic uptake, we employ palmitoleic acid, a host-produced monounsaturated fatty acid that perturbs the membrane of gram-positive pathogens and induces gentamicin uptake. This novel drug combination overcomes gentamicin tolerance and resistance in multiple gram-positive wound pathogens. To combat biofilm penetration, we examined the ability of sonobactericide, a non-invasive ultrasound-mediated-drug delivery technology to improve antibiotic efficacy using an in vivo biofilm model. This dual approach dramatically improved antibiotic efficacy against a methicillin-resistant Staphylococcus aureus (MRSA) wound infection in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Wound Infection , Mice , Animals , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Gentamicins/pharmacology , Gentamicins/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Wound Infection/drug therapy , Wound Infection/microbiology , Microbial Sensitivity Tests
6.
Ultrasound Med Biol ; 49(7): 1679-1685, 2023 07.
Article in English | MEDLINE | ID: mdl-37120330

ABSTRACT

OBJECTIVE: Efficient, sustained and long-term delivery of therapeutics to the brain remains an important challenge to treatment of diseases such as brain cancer, stroke and neurodegenerative disease. Focused ultrasound can assist movement of drugs into the brain, but frequent and long-term use has remained impractical. Single-use intracranial drug-eluting depots show promise but are limited for the treatment of chronic diseases as they cannot be refilled non-invasively. Refillable drug-eluting depots could serve as a long-term solution, but refilling is hindered by the blood-brain barrier (BBB), which prevents drug refills from accessing the brain. In this article, we describe how focused ultrasound enables non-invasive loading of intracranial drug depots in mice. METHODS: Female CD-1 mice (n = 6) were intracranially injected with click-reactive and fluorescent molecules that are capable of anchoring in the brain. After healing, animals were treated with high-intensity focused ultrasound and microbubbles to temporarily increase the permeability of the blood-brain barrier and deliver dibenzocyclooctyne (DBCO)-Cy7. The mice were perfused, and the brains were imaged via ex vivo fluorescence imaging. RESULTS: Fluorescence imaging indicated small molecule refills are captured by intracranial depots as long as 4 wk after administration and are retained for up to 4 wk based on fluorescence imaging. Efficient loading was dependent on both focused ultrasound and the presence of refillable depots in the brain as absence of either prevented intracranial loading. CONCLUSION: The ability to target and retain small molecules at predetermined intracranial sites with pinpoint accuracy provides opportunities to continuously deliver drugs to the brain over weeks and months without excessive BBB opening and with minimal off-target side effects.


Subject(s)
Blood-Brain Barrier , Neurodegenerative Diseases , Female , Mice , Animals , Drug Delivery Systems/methods , Brain/diagnostic imaging , Microbubbles , Magnetic Resonance Imaging/methods
7.
Pharm Res ; 39(12): 3359-3370, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36114362

ABSTRACT

PURPOSE: Tuberculosis (TB) remains one of the most serious diseases caused by a single organism. Multiple (MDR) and extensively (XDR) drug resistant disease poses a threat to global health and requires new drugs and/or innovative approaches to treatment. A number of drugs have been proposed as inhaled therapy for TB, frequently prepared by spray drying. CPZEN-45 is a novel anti-tubercular drug that has poor oral bioavailability but has shown promise when administered via inhalation. METHODS: Excipient-free CPZEN-45 HCl has been spray dried into a powder with physicochemical characteristics, aerodynamic particle size distribution, and delivered dose suitable for consideration as an inhaled product. RESULTS: The mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of the powder delivered using a RS01 inhaler were 2.62 ± 0.04 µm and 1.76 ± 0.09, respectively. Additionally, the powder was physically and chemically stable after storage at ambient conditions for >1.5 years with particle size similar to freshly manufactured product. Overages in spray dried powder were recycled the powder and resprayed into drug product likewise resulting in negligible change in quality thus allowing for further preclinical characterization as necessary. CPZEN-45 was scaled up using pilot-scale manufacturing equipment where the density of the powder was increased to facilitate larger delivered doses without affecting the aerodynamic performance properties. CONCLUSION: The spray dried powders were suitable for pharmacokinetics, efficacy and preclinical toxicology studies. The final method of manufacture may be used directly for CGMP particle manufacture to support IND and Phase I clinical trials and beyond.


Subject(s)
Aerosolized Particles and Droplets , Tuberculosis , Humans , Powders/chemistry , Tuberculosis/drug therapy , Administration, Inhalation , Aerosols/chemistry , Particle Size , Dry Powder Inhalers/methods
8.
Chemphyschem ; 23(24): e202200438, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36037034

ABSTRACT

Detection of bare gas microbubbles by magnetic resonance (MR) at low concentrations typically used in clinical contrast-ultrasound studies was recently demonstrated using hyperCEST. Despite the enhanced sensitivity achieved with hyperCEST, in vivo translation is challenging as on-resonance saturation of the gas-phase core of microbubbles consequently results in saturation of the gas-phase hyperpolarized 129 Xe within the lungs. Alternatively, microbubbles can be condensed into the liquid phase to form perfluorocarbon nanodroplets, where 129 Xe resonates at a chemical shift that is separated from the gas-phase signal in the lungs. For ultrasound applications, nanodroplets can be acoustically reverted back into their microbubble form to act as a phase-change contrast agent. Here, we show that low-boiling point perfluorocarbons, both in their liquid and gas form, generate phase-dependent hyperCEST contrast. Magnetic resonance detection of ultrasound-mediated phase transition demonstrates that these perfluorocarbons could be used as a dual-phase dual-modality MR/US contrast agent.


Subject(s)
Fluorocarbons , Contrast Media , Microbubbles , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
9.
Ultrasound Med Biol ; 48(11): 2344-2353, 2022 11.
Article in English | MEDLINE | ID: mdl-36028460

ABSTRACT

Pancreatic adenocarcinoma is an aggressive malignancy with limited therapeutic treatments available and a 5-y survival less than 10%. Pancreatic cancers have been found to be immunogenically "cold" with a largely immunosuppressive tumor microenvironment. There is emerging evidence that focused ultrasound can induce changes in the tumor microenvironment and have a constructive impact on the effect of immunotherapy. However, the immune cells and timing involved in these effects remain unclear, which is essential to determining how to combine immunotherapy with ultrasound for treatment of pancreatic adenocarcinoma. We used low-intensity focused ultrasound and microbubbles (LoFU + MBs), which can mechanically disrupt cellular membranes and vascular endothelia, to treat subcutaneous pancreatic tumors in C57BL/6 mice. To evaluate the immune cell landscape and expression and/or localization of damage-associated molecular patterns (DAMPs) as a response to ultrasound, we performed flow cytometry and histology on tumors and draining lymph nodes 2 and 15 d post-treatment. We repeated this study on larger tumors and with multiple treatments to determine whether similar or greater effects could be achieved. Two days after treatment, draining lymph nodes exhibited a significant increase in activated antigen presenting cells, such as macrophages, as well as expansion of CD8+ T cells and CD4+ T cells. LoFU + MB treatment caused localized damage and facilitated the translocation of DAMP signals, as reflected by an increase in the cytoplasmic index for high-mobility-group box 1 (HMGB1) at 2 d. Tumors treated with LoFU + MBs exhibited a significant decrease in growth 15 d after treatment, indicating a tumor response that has the potential for additive effects. Our studies indicate that focused ultrasound treatments can cause tumoral damage and changes in macrophages and T cells 2 d post-treatment. The majority of these effects subsided after 15 d with only a single treatment, illustrating the need for additional treatment types and/or combination with immunotherapy. However, when larger tumors were treated, the effects seen at 2 d were diminished, even with an additional treatment. These results provide a working platform for further rational design of focused ultrasound and immunotherapy combinations in poorly immunogenic cancers.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Ultrasonic Therapy , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , HMGB1 Protein , Immunity , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Pancreatic Neoplasms
11.
Ultrasound Med Biol ; 48(5): 954-960, 2022 05.
Article in English | MEDLINE | ID: mdl-35246338

ABSTRACT

Phase-change contrast agents (PCCAs) consisting of lipid-encapsulated low-boiling-point perfluorocarbons can be used in conjunction with ultrasound for diagnostic and therapeutic applications. One benefit of PCCAs is site-specific activation, whereby the liquid core is acoustically vaporized into a bubble detectable via ultrasound imaging. For further evaluation of PCCAs in a variety of applications, it is useful to disperse these nanodroplets into an acoustically compatible stationary matrix. However, many traditional phantom preparations require heating, which causes premature thermal activation of low-boiling-point PCCAs. Polyvinyl alcohol (PVA) cryogels do not require heat to set. Here we propose a simple method for the incorporation of the low-boiling-point PCCAs using octafluoropropane (OFP) and decafluorobutane (DFB) into PVA cryogels for a variety of acoustic characterization applications. We determined the utility of the phantoms by activating droplets with a focused transducer, visualizing the lesions with ultrasound imaging. At 1 MHz, droplet activation was consistently observed at 2.0 and 4.0 MPa for OFP and DFB, respectively.


Subject(s)
Contrast Media , Polyvinyl Alcohol , Acoustics , Cryogels , Ultrasonography/methods
12.
Biofilm ; 3: 100049, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34124645

ABSTRACT

Bacterial biofilms, often associated with chronic infections, respond poorly to antibiotic therapy and frequently require surgical intervention. Biofilms harbor persister cells, metabolically indolent cells, which are tolerant to most conventional antibiotics. In addition, the biofilm matrix can act as a physical barrier, impeding diffusion of antibiotics. Novel therapeutic approaches frequently improve biofilm killing, but usually fail to achieve eradication. Failure to eradicate the biofilm leads to chronic and relapsing infection, is associated with major financial healthcare costs and significant morbidity and mortality. We address this problem with a two-pronged strategy using 1) antibiotics that target persister cells and 2) ultrasound-stimulated phase-change contrast agents (US-PCCA), which improve antibiotic penetration. We previously demonstrated that rhamnolipids, produced by Pseudomonas aeruginosa, could induce aminoglycoside uptake in gram-positive organisms, leading to persister cell death. We have also shown that US-PCCA can transiently disrupt biological barriers to improve penetration of therapeutic macromolecules. We hypothesized that combining antibiotics which target persister cells with US-PCCA to improve drug penetration could improve treatment of methicillin resistant S. aureus (MRSA) biofilms. Aminoglycosides alone or in combination with US-PCCA displayed limited efficacy against MRSA biofilms. In contrast, the anti-persister combination of rhamnolipids and aminoglycosides combined with US-PCCA dramatically improved biofilm killing. This novel treatment strategy has the potential for rapid clinical translation as the PCCA formulation is a variant of FDA-approved ultrasound contrast agents that are already in clinical practice and the low-pressure ultrasound settings used in our study can be achieved with existing ultrasound hardware at pressures below the FDA set limits for diagnostic imaging.

13.
Chemphyschem ; 22(12): 1219-1228, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33852753

ABSTRACT

Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , Microbubbles , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Xenon Isotopes/chemistry
14.
J Pharm Sci ; 108(10): 3302-3311, 2019 10.
Article in English | MEDLINE | ID: mdl-31152746

ABSTRACT

Tuberculosis (TB) remains the single most serious infectious disease attributable to a single-causative organism. A variety of drugs have been evaluated for pulmonary delivery as dry powders: capreomycin sulfate has shown efficacy and was safely delivered by inhalation at high doses to human volunteers, whereas CPZEN-45 is a new drug that has also been shown to kill resistant TB. The studies here combine these drugs-acting by different mechanisms-as components of single particles by spray-drying, yielding a new combination drug therapy. The spray-dried combination powder was prepared in an aerodynamic particle size range suitable for pulmonary delivery. Physicochemical storage stability was demonstrated for a period of 6 months. The spray-dried combination powders of capreomycin and CPZEN-45 have only moderate affinity for mucin, indicating that delivered drug will not be bound by these mucins in the lung and available for microbicidal effects. The pharmacokinetics of disposition in guinea pigs demonstrated high local concentrations of drug following direct administration to the lungs and subsequent systemic bioavailability. Further studies are required to demonstrate the in vivo efficacy of the combination to confirm the therapeutic potential of this novel combination.


Subject(s)
Antitubercular Agents/chemistry , Azepines/chemistry , Capreomycin/chemistry , Tuberculosis/drug therapy , Administration, Inhalation , Aerosols/administration & dosage , Aerosols/chemistry , Animals , Antibiotics, Antitubercular/administration & dosage , Antibiotics, Antitubercular/chemistry , Antitubercular Agents/administration & dosage , Azepines/administration & dosage , Chemistry, Pharmaceutical/methods , Dry Powder Inhalers/methods , Guinea Pigs , Lung/drug effects , Male , Particle Size , Powders/administration & dosage , Powders/chemistry
15.
PLoS One ; 13(9): e0204495, 2018.
Article in English | MEDLINE | ID: mdl-30261007

ABSTRACT

New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.


Subject(s)
Antitubercular Agents/administration & dosage , Granuloma, Respiratory Tract/drug therapy , Pyrazinamide/analogs & derivatives , Tuberculosis, Pulmonary/drug therapy , Aerosols , Animals , Antitubercular Agents/pharmacokinetics , Bacterial Load , Disease Models, Animal , Drug Therapy, Combination , Dry Powder Inhalers , Granuloma, Respiratory Tract/microbiology , Granuloma, Respiratory Tract/pathology , Guinea Pigs , Male , Mycobacterium tuberculosis/drug effects , Necrosis , Pyrazinamide/administration & dosage , Pyrazinamide/pharmacokinetics , Respiratory Tract Absorption , Rifampin/administration & dosage , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
16.
J Vis Exp ; (121)2017 03 30.
Article in English | MEDLINE | ID: mdl-28447980

ABSTRACT

Development of new therapeutic products requires efficacy testing in an animal model. The pulmonary route of administration can be utilized to deliver drugs locally and systemically. Evaluation of dry powder aerosols necessitates an efficient dispersion mechanism to maintain high concentrations in an exposure chamber or for direct endotracheal administration. While solutions exist to expose animals by passive inhalation to dry powder aerosols, most require masses of powder in large excess of the dose delivered. This precludes conducting early feasibility studies as insufficient drug is available at the research or early development stage to support the dose delivery requirements for conventional aerosol delivery systems. When designing an aerosol drug product, aerodynamic performance can relate directly to delivery efficiency and efficacy. Dispersion of powder into an aerosol requires energy input sufficient to overcome interparticulate forces, and particle engineering approaches can substantially improve aerosol performance. We have developed a dispersion system (dosator) which can aerosolize engineered dry powder aerosols efficiently for the purpose of direct pulmonary insufflation, dispersion into an exposure system or generation for analytical purposes.


Subject(s)
Insufflation/instrumentation , Lung , Administration, Inhalation , Animals , Particle Size , Powders
17.
J Appl Toxicol ; 35(10): 1114-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25809700

ABSTRACT

Surface-functionalized silver nanoparticles (AgNPs) are the most deployed engineered nanomaterials in consumer products because of their optical, antibacterial and electrical properties. Almost all engineered nanoparticles are coated with application-specific capping agents (i.e. organic/inorganic ligands on particle surface) to enhance their stability in suspension or increase their biocompatibility for biomedicine. The aim of this study was to investigate the contribution of the selected capping agents to their observed health impacts using realistic dose ranges. AgNPs capped with citrate, polyvinylpyrrolidone (PVP) and tannic acid were studied with human bronchoalveolar carcinoma (A549) and human colon adenocarcinoma (Caco-2) cell lines and compared against exposures to Ag ions. Cellular uptake and cytotoxicity were evaluated up to 24 h. Tannic acid capped AgNPs induced higher cellular uptake and rate in both cell lines. Citrate-capped and PVP-capped AgNPs behaved similarly over 24 h. All three of the capped AgNPs penetrated more into the A549 cells than Caco-2 cells. In contrast, the uptake rate of Ag ions in Caco-2 cells (0.11 ± 0.0001 µg h(-1) ) was higher than A549 cells (0.025 ± 0.00004 µg h(-1) ). The exposure concentration of 3 mg l(-1) is below the EC50 value for all of the AgNPs; therefore, little cytotoxicity was observed in any experiment conducted herein. Exposure of Ag ions, however, interrupted cell membrane integrity and cell proliferation (up to 70% lysed after 24 h). These findings indicate cellular uptake is dependent on capping agent, and when controlled to realistic exposure concentrations, cellular function is not significantly affected by AgNP exposure.


Subject(s)
Metal Nanoparticles/chemistry , Biocompatible Materials , Caco-2 Cells , Cell Line , Cell Line, Tumor , Cell Membrane/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Citrates/chemistry , Humans , Kinetics , L-Lactate Dehydrogenase/metabolism , Metal Nanoparticles/toxicity , Particle Size , Povidone/chemistry , Silver/chemistry , Surface Properties , Suspensions , Tannins/chemistry
18.
J Control Release ; 199: 45-52, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25497311

ABSTRACT

It has long been desired to match airflow conditions during formulation evaluation to those of relevance to lung deposition. In this context several strategies have been adopted involving sampling at different: flow rate (without consideration of flow conditions, e.g. shear, Reynolds number, work function); pressure drop (with and without consideration of flow conditions) and; flow rate and pressure drop. Performance testing has focused on the influence of these sampling conditions on delivered dose uniformity and aerodynamic particle size distribution. However, in order to be physiologically relevant it is also important to know when the drug was delivered with respect to initiation of airflow as variation in this parameter would influence lung deposition. A light obscuration method of detecting the dose delivered from a dry powder inhaler while sampling for aerodynamic particle size distributions (APSD) by inertial impaction has been developed. Four formulations of albuterol sulfate and budesonide in sieved and milled lactose, respectively, were dispersed and their rate of delivery monitored. The differences observed have the potential to impact the site of delivery in the lungs. The rate of delivery of drug is clearly an important companion measurement to delivered dose and APSD if the intent is to predict the similarity of in vivo performance of dry powder inhaler products.


Subject(s)
Chemistry, Pharmaceutical/methods , Dry Powder Inhalers , Albuterol/administration & dosage , Albuterol/pharmacokinetics , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/pharmacokinetics , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Drug Carriers , Drug Delivery Systems , Excipients , In Vitro Techniques , Lactose , Particle Size , Powders
19.
J Microencapsul ; 31(8): 785-95, 2014.
Article in English | MEDLINE | ID: mdl-25090595

ABSTRACT

There is increasing interest in the use of inhaled aerosol drug therapy for the treatment of tuberculosis (TB). A number of methods of preparation of particles have been employed including spray drying, solvent evaporation, emulsion and phospholipid methods to create microparticles, macroaggregated nanoparticles, solid lipid nanoparticles and liposomes. Each of these methods involves the use of different proportions of additives to aid in the particle formation or to achieve important physico-chemical properties such as ease of dispersion. While these approaches all have merit their practical value is limited by constraints on dose and means of delivery as an aerosol in order to achieve a therapeutic effect. A review of a number of approaches is presented and placed in the context of the need for effective aerosol delivery systems for the treatment of TB as a guide to selection of appropriate excipients, processes and delivery strategies to support product development activities.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Nanoparticles/chemistry , Tuberculosis, Pulmonary/drug therapy , Administration, Inhalation , Aerosols , Humans , Liposomes/chemistry , Liposomes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...