Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Leukemia ; 29(12): 2317-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26108691

ABSTRACT

The TLX1 transcription factor is critically involved in the multi-step pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and often cooperates with NOTCH1 activation during malignant T-cell transformation. However, the exact molecular mechanism by which these T-cell specific oncogenes cooperate during transformation remains to be established. Here, we used chromatin immunoprecipitation followed by sequencing to establish the genome-wide binding pattern of TLX1 in human T-ALL. This integrative genomics approach showed that ectopic TLX1 expression drives repression of T cell-specific enhancers and mediates an unexpected transcriptional antagonism with NOTCH1 at critical target genes, including IL7R and NOTCH3. These phenomena coordinately trigger a TLX1-driven pre-leukemic phenotype in human thymic precursor cells, reminiscent of the thymus regression observed in murine TLX1 tumor models, and create a strong genetic pressure for acquiring activating NOTCH1 mutations as a prerequisite for full leukemic transformation. In conclusion, our results uncover a functional antagonism between cooperative oncogenes during the earliest phases of tumor development and provide novel insights in the multi-step pathogenesis of TLX1-driven human leukemia.


Subject(s)
Homeodomain Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Homeodomain Proteins/physiology , Humans , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Proto-Oncogene Proteins/physiology , Receptor, Notch1/genetics , Receptor, Notch1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...