Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Appl Environ Microbiol ; 88(21): e0094222, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36226941

ABSTRACT

Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.


Subject(s)
Emodin , Mycobiome , Mycotoxins , Cattle , Animals , Poaceae/chemistry , Seasons , Chromatography, Liquid , Tandem Mass Spectrometry , Livestock , Geography , Plant Leaves , Fungal Structures
2.
Toxins (Basel) ; 13(10)2021 10 10.
Article in English | MEDLINE | ID: mdl-34679007

ABSTRACT

We evaluated the effects of a treatment diet contaminated with 1.7 mg deoxynivalenol and 3.5 mg fumonisins (B1, B2 and B3) per kg ration on immune status and peripheral blood gene expression profiles in finishing-stage Angus steers. The mycotoxin treatment diet was fed for a period of 21 days followed by a two-week washout period during which time all animals consumed the control diet. Whole-blood leukocyte differentials were performed weekly throughout the experimental and washout period. Comparative profiles of CD4+ and CD8+ T cells, along with bactericidal capacity of circulating neutrophils and monocytes were evaluated at 0, 7, 14, 21 and 35 days. Peripheral blood gene expression was measured at 0, 7, 21 and 35 days via RNA sequencing. Significant increases in the percentage of CD4-CD8+ T cells were observed in treatment-fed steers after two weeks of treatment and were associated with decreased CD4:CD8 T-cell ratios at this same timepoint (p ≤ 0.10). No significant differences were observed as an effect of treatment in terms of bactericidal capacity at any timepoint. Dietary treatments induced major changes in transcripts associated with endocrine, metabolic and infectious diseases; protein digestion and absorption; and environmental information processing (inhibition of signaling and processing), as evaluated by dynamic impact analysis. DAVID analysis also suggested treatment effects on oxygen transport, extra-cellular signaling, cell membrane structure and immune system function. These results indicate that finishing-stage beef cattle are susceptible to the immunotoxic and transcript-inhibitory effects of deoxynivalenol and fumonisins at levels which may be realistically encountered in feedlot situations.


Subject(s)
Cattle/immunology , Fumonisins/toxicity , Trichothecenes/toxicity , Animal Feed/adverse effects , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cattle/genetics , Cattle/metabolism , Diet/veterinary , Food Contamination , Gene Expression Regulation/drug effects , Immune System/drug effects , Male
3.
Toxins (Basel) ; 13(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925470

ABSTRACT

This case-control study adds to the growing body of knowledge on the medical, nutritional, and environmental factors associated with Nodding Syndrome (NS), a seizure disorder of children and adolescents in northern Uganda. Past research described a significant association between NS and prior history of measles infection, dependence on emergency food and, at head nodding onset, subsistence on moldy maize, which has the potential to harbor mycotoxins. We used LC-MS/MS to screen for current mycotoxin loads by evaluating nine analytes in urine samples from age-and-gender matched NS cases (n = 50) and Community Controls (CC, n = 50). The presence of the three mycotoxins identified in the screening was not significantly different between the two groups, so samples were combined to generate an overall view of exposure in this community during the study. Compared against subsequently run standards, α-zearalenol (43 ± 103 µg/L in 15 samples > limit of quantitation (LOQ); 0 (0/359) µg/L), T-2 toxin (39 ± 81 µg/L in 72 samples > LOQ; 0 (0/425) µg/L) and aflatoxin M1 (4 ± 10 µg/L in 15 samples > LOQ; 0 (0/45) µg/L) were detected and calculated as the average concentration ± SD; median (min/max). Ninety-five percent of the samples had at least one urinary mycotoxin; 87% were positive for two of the three compounds detected. While mycotoxin loads at NS onset years ago are and will remain unknown, this study showed that children with and without NS currently harbor foodborne mycotoxins, including those associated with maize.


Subject(s)
Mycotoxins/urine , Nodding Syndrome/urine , Adolescent , Aflatoxins/adverse effects , Aflatoxins/urine , Case-Control Studies , Child , Child Development/drug effects , Child Nutritional Physiological Phenomena/drug effects , Child, Preschool , Female , Food Microbiology , Humans , Male , Mycotoxins/adverse effects , Nodding Syndrome/etiology , Uganda , Zea mays/adverse effects , Zea mays/microbiology , Zeranol/adverse effects , Zeranol/analogs & derivatives , Zeranol/urine
4.
Phytopathology ; 111(5): 831-841, 2021 May.
Article in English | MEDLINE | ID: mdl-33141647

ABSTRACT

Ergot, caused by Claviceps purpurea sensu lato, is an economically important seed replacement disease of Kentucky bluegrass (Poa pratensis) and perennial ryegrass (Lolium perenne) seed crops. C. purpurea sensu stricto is considered the primary Claviceps species responsible, but genetic diversity and cryptic species within C. purpurea sensu lato have previously been reported. Fifty-six C. purpurea sensu lato isolates collected from P. pratensis (n = 21) and L. perenne (n = 35) in Oregon and Washington between 2010 and 2014 were characterized via random amplified polymorphic DNA (RAPD), partial internal transcribed spacer (ITS), ß-tubulin and elongation factor-1α (EF-1α) sequences, conidial size, and ergot alkaloid chemotype. Based on RAPD analysis, seven isolates from P. pratensis and 33 isolates from L. perenne collected in Oregon corresponded to C. purpurea sensu stricto, and 13 isolates collected from P. pratensis in Washington and Oregon were identified as C. humidiphila. Partial ITS, ß-tubulin, and EF-1α sequences identified 10 isolates from P. pratensis as C. humidiphila, and seven isolates from P. pratensis and 33 isolates from L. perenne were identified as C. purpurea sensu stricto. Several isolates generated ambiguous RAPD bands or sequences that prevented identification. Ergot alkaloid chemotype profiling found that ergocornine and its epimer were predominant in sclerotia from P. pratensis, whereas ergotamine and its epimer were most abundant in sclerotia from L. perenne. This study confirms the presence of the C. purpurea sensu lato species complex in the U.S. Pacific Northwest and suggests that more research is needed to characterize and mitigate Claviceps spp. infection of grass seed crops in North America.


Subject(s)
Claviceps , Ergot Alkaloids , Claviceps/genetics , Plant Diseases , Poaceae , Random Amplified Polymorphic DNA Technique , Seeds , Washington
5.
J Econ Entomol ; 113(5): 2079-2085, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32651952

ABSTRACT

Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Sulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.


Subject(s)
Ergot Alkaloids , Hemiptera , Hypocreales , Solanum tuberosum , Animals , Nymph
6.
PLoS One ; 13(9): e0201506, 2018.
Article in English | MEDLINE | ID: mdl-30204748

ABSTRACT

Plant species in the family Solanaceae are the usual hosts of potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). However, the psyllid has also been shown to develop on some species of Convolvulaceae (bindweeds and morning glories). Developmental success on Convolvulaceae is surprising given the rarity of psyllid species worldwide associated with this plant family. We assayed 14 species of Convolvulaceae across four genera (Convolvulus, Calystegia, Ipomoea, Turbina) to identify species that allow development of potato psyllid. Two populations of psyllids were assayed (Texas, Washington). The Texas population overlaps extensively with native Convolvulaceae, whereas Washington State is noticeably lacking in Convolvulaceae. Results of assays were overlain on a phylogenetic analysis of plant species to examine whether Convolvulaceae distantly related to the typical host (potato) were less likely to allow development than species of Convolvulaceae more closely related. Survival was independent of psyllid population and location of the plant species on our phylogenetic tree. We then examined whether presence of a fungal symbiont of Convolvulaceae (Periglandula spp.) affected psyllid survival. These fungi associate with Convolvulaceae and produce a class of mycotoxins (ergot alkaloids) that may confer protection against plant-feeding arthropods. Periglandula was found in 11 of our 14 species, including in two genera (Convolvulus, Calystegia) not previously known to host the symbiont. Of these 11 species, leaf tissues from five contained large quantities of two classes of ergot alkaloids (clavines, amides of lysergic acid) when evaluated by LC-MS/MS. All five species also harbored Periglandula. No ergot alkaloids were detected in species free of the fungal symbiont. Potato psyllid rapidly died on the five species that harbored Periglandula and contained ergot alkaloids, but survived to adulthood on seven of the nine species in which ergot alkaloids were not detected. These results support the hypothesis that a plant-fungus symbiotic relationship affects the suitability of certain Convolvulaceae to potato psyllid.


Subject(s)
Ascomycota/growth & development , Hemiptera/growth & development , Solanum tuberosum , Symbiosis/physiology , Animals , Phylogeny , Solanum tuberosum/microbiology , Solanum tuberosum/parasitology
7.
J Agric Food Chem ; 66(25): 6394-6401, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29847929

ABSTRACT

Past research showed a strong linear correlation between levels of the mycotoxins lolitrem B (LB, a tremorgen) and ergovaline (EV, an ergot alkaloid and potent vasoconstrictor) in perennial ryegrass (PRG) forage. The purpose of this study was to characterize the excretion of these two compounds in beef cattle consuming PRG straw and to utilize liquid chromatography-tandem mass spectrometry to investigate the metabolism of LB and EV in excreta. Four groups of steers ( n = 6/group) were fed endophyte-infected PRG for 64 days (2256/638, 1554/373, 1012/259, or 247/<100 µg/kg LB/EV). Concentrations of LB and EV in both PRG straw and feces showed a linear relationship to each other. Feces reflected a dose-response for both mycotoxins, with values increasing most rapidly through 21 days then plateauing. Urine contained no detectable level of either compound or the ergoline lysergic acid. Screening for metabolites showed oxidation and reduction biotransformations for both toxins, with additional conjugation products detected for ergovaline.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Ergotamines/analysis , Feces/chemistry , Indole Alkaloids/analysis , Lolium/metabolism , Mycotoxins/analysis , Urine/chemistry , Animal Feed/microbiology , Animals , Cattle/urine , Ergotamines/metabolism , Ergotamines/urine , Food Contamination/analysis , Indole Alkaloids/metabolism , Indole Alkaloids/urine , Lolium/chemistry , Lolium/microbiology , Mycotoxins/metabolism , Mycotoxins/urine
8.
Front Plant Sci ; 8: 1931, 2017.
Article in English | MEDLINE | ID: mdl-29184560

ABSTRACT

The Vitex genus (Lamiaceae) produces a plethora of metabolites that include ecdysteroids and terpenoids, some of which have demonstrated insect repellent properties. The volatile composition of several members of this genus has not been chemically defined, as many taxa are endemic to remote ecosystems. In this study, leaves were collected from the northeast of Brazil from Vitex capitata, V. megapotamica, V. gardneriana, and V. rufescens plants and examined for their chemical profile via GC-MS/FID of essential oil extracts. The analyses showed a diversity of terpenoids. Of particular note were seven-member ring sesquiterpenes which were present in great abundance; a dendrogram showed clades separating by the production of bicyclogermacrene, aromadendrane and 5,10-cycloaromadendrane sesquiterpenoids for the four species. Comparison of volatile metabolite profiles to 13 other Vitex species showed strong similarities in the production of some monoterpenes, but varied by their production of larger terpenes, especially those with gem-dimethylcyclopropyl subunits on seven-member ring compounds. From this work, we suggest that the sesquiterpene skeleton with seven member rings is a good chemosystematic biomarker candidate for the Vitex genus. Separation using this biomarker was then validated using Inter-Simple Sequence Repeat profiling. Lastly, experiments examining the toxicity of these four oils against the coconut mite Aceria guerreronis showed that only the oil of V. gardneriana had strong acaricidal activity, with an LC50 of 0.85 mg/mL, thus demonstrating its potential for use as a natural pesticide.

9.
Toxins (Basel) ; 8(7)2016 07 20.
Article in English | MEDLINE | ID: mdl-27447670

ABSTRACT

Evaluation of environmental risk factors in the development of autism spectrum disorder (ASD) is needed for a more complete understanding of disease etiology and best approaches for prevention, diagnosis, and treatment. A pilot experiment in 54 children (n = 25 ASD, n = 29 controls; aged 12.4 ± 3.9 years) screened for 87 urinary mycotoxins via liquid chromatography-tandem mass spectrometry to assess current exposure. Zearalenone, zearalenone-4-glucoside, 3-acetyldeoxynivalenol, and altenuene were detected in 9/54 (20%) samples, most near the limit of detection. No mycotoxin/group of mycotoxins was associated with ASD-diagnosed children. To identify potential correlates of mycotoxin presence in urine, we further compared the nine subjects where a urinary mycotoxin was confirmed to the remaining 45 participants and found no difference based on the presence or absence of mycotoxin for age (t-test; p = 0.322), gender (Fisher's exact test; p = 0.456), exposure or not to selective serotonin reuptake inhibitors (Fisher's exact test; p = 0.367), or to other medications (Fisher's exact test; p = 1.00). While no positive association was found, more sophisticated sample preparation techniques and instrumentation, coupled with selectivity for a smaller group of mycotoxins, could improve sensitivity and detection. Further, broadening sampling to in utero (mothers) and newborn-toddler years would cover additional exposure windows.


Subject(s)
Autism Spectrum Disorder/etiology , Mycotoxins/adverse effects , Mycotoxins/urine , Adolescent , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/urine , Biomarkers/urine , Case-Control Studies , Child , Child, Preschool , Chromatography, Liquid , Environmental Exposure/adverse effects , Female , Humans , Lactones/adverse effects , Lactones/urine , Limit of Detection , Male , Pilot Projects , Reproducibility of Results , Risk Assessment , Risk Factors , Tandem Mass Spectrometry , Trichothecenes/adverse effects , Trichothecenes/urine , Urinalysis , Young Adult , Zearalenone/adverse effects , Zearalenone/analogs & derivatives , Zearalenone/urine
10.
J Agric Food Chem ; 63(16): 4236-42, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25811236

ABSTRACT

Ergovaline is an ergot alkaloid produced by the symbiotic endophyte Epichloë coenophiala, which can colonize varieties of the cool-season grass tall fescue (Festuca arundinacea). It is the principle toxicant responsible for the vasoconstrictive and reproductive sequelae seen in "fescue toxicosis" in livestock which consume forage exceeding the threshold of toxicity established for this compound. A new method for extraction of ergovaline from tall fescue seed and straw was optimized and validated, on the basis of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method, with high-performance liquid chromatography-fluorescence detection. Fourteen extraction solvents were tested; 2.1 mM ammonium carbonate/acetonitrile (50/50, v/v) had the highest and most consistent recovery (91-101%). Linearity, limit of detection, limit of quantitation, accuracy,and intra- and interday precisions for tall fescue seed and straw were 100-3500 µg/kg, 37 and 30 µg/kg, 100 µg/kg, 98%, 3.0 and 1.6%, and 3.8 and 1.0%, respectively. When the currently used solid-phase extraction (SPE) and QuEChERS methods were applied to 17 tall fescue straw samples, there was good agreement (correlation coefficient 0.9978). The QuEChERS method achieved the goals of eliminating chlorinated solvents and developing a fast, efficient, reliable method for quantitating ergovaline in tall fescue forage that can be applied in a high-throughput food safety laboratory.


Subject(s)
Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Ergotamines/analysis , Ergotamines/isolation & purification , Festuca/chemistry , Plant Extracts/analysis , Plant Extracts/isolation & purification , Animal Feed/analysis , Chromatography, High Pressure Liquid/instrumentation , Plant Stems/chemistry , Seeds/chemistry
11.
Front Chem ; 3: 8, 2015.
Article in English | MEDLINE | ID: mdl-25741505

ABSTRACT

Ergot-induced disease in humans was known long before Biblical times and has been the root cause for countless human epidemics spanning from the early fourteenth century to the late sixteenth century. In contrast, many of these same ergot alkaloids have been utilized for their medicinal properties to mitigate migraine headaches and have had indications as anti-carcinogens. Although ergot alkaloids have been used for centuries by humans, basic pharmacokinetic data has not been documented for clinical disease in livestock. Consequently, a threshold dose and accurate dose-response data have yet to be established. Throughout the past several years, new detection techniques have emerged to detect these alkaloids at the parts per billion (ppb) level which has allowed for new efforts to be made with respect to determining threshold levels and making accurate clinical diagnoses in affected animals. This perspectives article provides a critical initial step for establishing a uniform interpretation of ergot toxicosis from limited existing data.

12.
PLoS One ; 9(11): e110505, 2014.
Article in English | MEDLINE | ID: mdl-25383623

ABSTRACT

The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.


Subject(s)
Metagenomics/methods , Microbiota/genetics , Rumen/microbiology , Sheep/microbiology , Triazines/metabolism , Water Pollutants, Chemical/metabolism , Animals , Base Sequence , Biodegradation, Environmental , Cloning, Molecular , Genes, Bacterial/genetics , Male , Microbiota/physiology , Molecular Sequence Annotation , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
J Agric Food Chem ; 62(30): 7376-81, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25017309

ABSTRACT

The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.


Subject(s)
Animal Diseases/diagnosis , Claviceps/pathogenicity , Endophytes/pathogenicity , Lolium/microbiology , Neotyphodium/pathogenicity , Animals , Camelus , Cattle , Chromatography, High Pressure Liquid , Ergotamines/analysis , Ergotamines/toxicity , Festuca/microbiology , Horses , Indole Alkaloids/analysis , Indole Alkaloids/toxicity , Laboratories , Livestock , Mycotoxins/analysis , Mycotoxins/toxicity , Oregon , Sheep , Universities
14.
FEMS Microbiol Lett ; 350(1): 34-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164342

ABSTRACT

The ability of ruminal microorganisms to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high melting explosive, HMX) as consortia from whole rumen fluid (WRF), and individually as 23 commercially available ruminal strains, was compared under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for delineation of the metabolic pathway. In WRF, 30 µM HMX was degraded to 5 µM HMX within 24 h. Metabolites consistent with m/z 149, 193 and 229 were present throughout the incubation period. We propose that peaks with an m/z of 149 and 193 are arrived at through reduction of HMX to nitroso or hydroxylamino intermediates, then direct enzymatic ring cleavage to produce these HMX derivatives. Possible structures of m/z 229 are still being investigated and require further LC-MS/MS analysis. None of the 23 ruminal strains tested were able to degrade HMX as a pure culture when grown in either a low carbon or low nitrogen basal medium over 120 h. We conclude that microorganisms from the rumen, while sometimes capable as individuals in the bioremediation of other explosives, excel as a community in the case of HMX breakdown.


Subject(s)
Azocines/metabolism , Bacteria/metabolism , Explosive Agents/metabolism , Microbial Consortia/physiology , Rumen/microbiology , Anaerobiosis , Animals , Azocines/chemistry , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Explosive Agents/chemistry , Sheep , Tandem Mass Spectrometry
15.
Toxicol Mech Methods ; 21(8): 606-21, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21506724

ABSTRACT

This case report involves four dairies in the Willamette Valley, Oregon, which experienced reproductive problems associated with the presence of a large, previously unidentified, peak eluting at 5 min in a standard ergovaline high-performance liquid chromatography assay of perennial ryegrass silage fed to those animals. Mycotoxin analysis of the silage was negative, as was serological screening of the herds for infectious bovine rhinotracheitis, bovine diarrhea virus and Leptospirosis, including culturing of urine for Leptospira hardjo hardjobovis. Prolactin concentrations were low in most cattle, consistent with ingestion of ergot alkaloids. We believe that this peak represents a novel ergot alkaloid-related compound due to its extractability with Ergosil, its detectability due to fluorescence, and its chromatographic retention between ergovaline (mw = 533) and ergotamine (mw = 581). Its molecular weight was calculated as 570 owing to the predominance of a m/z 593.5 ion in the full scan ESI(+)MS and its deduced tendency to complex with Na(+) (as m/z 593) or K(+) (as m/z 609) ions. We offer rationales for elucidation of the structure of this compound, with the closest starting point comprising an m.w. of 566-a fructofuranosyl-(2-1)-O-beta-D-fructofuranoside derivative of 6,7-secoergoline from Claviceps fusiformis. This m.w. requires modifications, such as reduction of two double bonds in the secoergoline component to give the target 570 m.w. Despite the lack of a definitive structure, the analysis herein provides a starting point for eventual elucidation of this apparently new ergot alkaloid, and to guide and encourage further investigation as to its association with endophyte toxicosis in livestock.


Subject(s)
Chromatography, High Pressure Liquid , Ergot Alkaloids/chemistry , Ergot Alkaloids/toxicity , Lolium/chemistry , Silage/analysis , Spectrometry, Mass, Electrospray Ionization , Abortion, Veterinary/chemically induced , Animals , Cattle , Cattle Diseases/chemically induced , Dairying , Female , Infertility, Female/chemically induced , Infertility, Female/veterinary , Metals, Alkali , Molecular Structure , Pregnancy
16.
Rev. colomb. cienc. pecu ; 23(4): 451-461, oct.-dic. 2010. tab
Article in English | LILACS | ID: lil-636065

ABSTRACT

The qualitative composition and antibacterial activity of six essential oils obtained from plants cultivated in the Colombian Andes (Mentha spicata, Mentha piperita, Ocimum basilicum, Salvia officinalis, Rosmarinus officinalis and Thymus vulgaris) and a commercial essential oil of Origanum vulgare subsp. hirtum were investigated. The essential oil composition was determined by gas chromatography-mass spectrometry (GC-MS), while the antibacterial activity of the essential oils against Escherichia coli, Salmonella enteritidis, Salmonella typhimurium, Lactobacillus acidophilus and Bifidobacterium breve was measured as the minimum bacte icidal concentration (MBC) using the agar dilution method. The chemical analysis revealed the presence of 16-28 compounds in each oil, corresponding mainly to phenols, oxygenated and hydrocarbon monoterpenes. O. vulgare and T. vulgaris oils were active at low MBCs (MBC ≤ 5 mg/ml) against all bacteria evaluated, including beneficial microorganisms. In contrast, O. basilicum oil was more active against pathogenic bacteria (MBCs ≤ 10mg/ml) than beneficial bacteria (MBCs of 80 mg/ml). The present study shows that the antimicrobial potential of essential oils depends not only on the chemical composition of the oil but also on the targeted microorganism. This has important practical implications for essential oils intended to be used as feed additives with antibacterial properties for animal nutrition or pharmaceutical products with natural compounds.


Se investigó la composición cualitativa y la actividad antibacteriana de seis aceites esenciales obtenidos de plantas cultivadas en los Andes Colombianos (Mentha spicata, Mentha piperita, Ocimum basilicum, Salvia officinalis, Rosmarinus officinalis y Thymus vulgaris) y un aceite esencial comercial de Origanum vulgare subsp. hirtum. La composición de los aceites esenciales fue determinada por cromatografía de gasesespectrofotometría de masas (CG-EM), mientras que la actividad antibacteriana de los aceites esenciales contra Escherichia coli, Salmonella enteritidis, Salmonella typhimurim, Lactobacillus acidophilus y Bifidobacterium breve, fue medida como la concentración mínima bactericida (CMB) usando el método de dilución en agar. Los análisis químicos revelaron la presencia de16 - 28 compuestos en cada aceite, correspondiendo principalmente a monoterpenos fenolicos, oxigenados e hidrocarbonos. Los aceites de O. vulgare y T. vulgaris fueron activos contra todas las bacterias evaluadas, incluyendo microorganismos benéficos a CMBs bajas (CMB ≤ 5 mg/ml). En contraste, el aceite de O. basilicum fue más activo contra bacterias patógenas (CMBs ≤ 10 mg/ml) en comparación de bacterias benéficas (CMBs de 80 mg/ml). El presente estudio demostró que el potencial antimicrobiano de los aceites esenciales no depende solo de la composición química del aceite sino también del microorganismo por sí mismo. Estos resultados tienen implicaciones prácticas para los aceites esenciales usados como aditivos alimenticios con propiedades antibacterianas para la nutrición animal o productos farmacéuticos con compuestos naturales.


Pesquisou-se a composição qualitativo e a atividade antibacteriana de seis azeites essenciais obtidos de plantas cultivadas nos Andes Colombianos (Mentha spicata, Mentha piperita, Ocimum basilicum, Salvia officinalis, Rosmarinus officinalis e Thymus vulgaris) e um azeite essencial comercial de Origanum vulgare subsp. hirtum. A composição dos azeites essenciais foi determinada por cromatografía de gases -espectrofotometría de massas (CM-EM), enquanto a atividade antibacteriana dos azeites essenciais contra Escherichia coli, Salmonella enteritidis, Salmonella typhimurim, Lactobacillus acidophilus e Bifidobacterium breve foi medida como a concentração mínima bactericida (CMB) usando o método de diluição em ágar. As análises químicas revelaram a presença de16 - 28 compostos em cada azeite, correspondendo principalmente à monoterpenos fenólicos, hidrocarbonetos e oxigenados. Os azeites de O. vulgare e T. vulgaris foram ativos contra todas as bactérias testadas, incluindo microorganismos benéficos a CMBs baixas (CMB ≤ 5 mg/ml). Em contraste, o azeite de O. basilicum foi mais ativo contra bactérias patogénicas do que bactérias benéficas (CMBs de 80 mg/ml). Este estudo demonstrou o potencial antimicrobiano dos azeites essenciais depende da composição química do azeite e o microorganismo próprio. Estes resultados têm implicações práticas para os azeites essenciais usados como aditivos alimentícios com propriedades antibacterianas para a nutrição animal ou produtos farmacêuticos com produtos naturais.

17.
Environ Sci Technol ; 44(16): 6325-30, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20666491

ABSTRACT

This study investigated the fate and uptake of [(14)C]-TNT from soil into orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne), and tall fescue (Festuca arundinacea) over a one year period in a greenhouse-controlled environment. Pots (n = 4 for each grass, containing 10 mg cold TNT/kg soil + 1.2 mg [(14)C]-TNT/kg soil and controls with no TNT) were exposed to light and temperature conditions typical of June at 45 degrees N for 369 days. Three plant harvests were made (63, 181, and 369 days), and soil and plant materials were monitored for [(14)C]-TNT and metabolite concentrations. The 11.2 mg/kg TNT dose was not phytotoxic to the plant species tested. Continual uptake of TNT into grass blades was observed over the one-year period, with a total accumulation of 1.3%, 0.9%, and 0.8% of the initial soil [(14)C]-TNT dose for orchard grass, perennial ryegrass, and tall fescue, respectively. All [(14)C]-TNT residue in plant material was incorporated as bound residue. At final harvest, radioactivity was concentrated most highly in the root > crown > blade for all species. Soil TNT was gradually reduced to aminodinitro-toluenes and then further to an unidentified metabolite(s). Overall, orchardgrass appeared to be the most efficient species at taking up TNT.


Subject(s)
Cold Temperature , Poaceae/metabolism , Seasons , Soil Pollutants/metabolism , Trinitrotoluene/metabolism , Biodegradation, Environmental , Biotransformation , Carbon Radioisotopes
18.
Nat Prod Commun ; 5(4): 635-40, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20433088

ABSTRACT

Essential oil extracts from the leaves of two Lantana species (L. radula Sw. and L. canescens Kunth), for which no prior analysis has been reported, were analyzed by GC-MS. This information was utilized to propose chemical markers for Lantana species so that identification between physically similar plant species can be achieved through chemical analysis. Results showed 33 constituents for L. canescens, among which beta-caryophyllene (43.9%), beta-cubebene (10.1%), elixene (8.6%), beta-phellandrene (6.1%), alpha-caryophyllene (2.6%) and dehydro-aromadendrene (2.6%) were the principle components. L. radula revealed the presence of 21 compounds, the most abundant of which were beta-cubebene (31.0%), beta-caryophyllene (20.8%), elixene (10.0%), alpha-salinene (6.4%), beta-phellandrene (6.1%), copaene (4.9%) cadinene (1.4%) and psi-limonene (1.4%). The high concentration of beta-caryophyllene in the samples tested here and those in the literature make it a good candidate for a chemical marker for Lantana species, with beta-cubebene, elixene and beta-phellandrene following as minor compounds identified more sporadically in this genus. On the other hand, Lippia species, which are morphologically similar to those from the Lantana genus, would contain limonene, citral, carvacrol, beta-myrcene, camphor and thymol as the main chemical markers. These chemical markers would be a powerful tool for maintaining quality control in the extraction of essential oils for use in medicinal applications, as well as in identification of plant specimens to a taxonomist.


Subject(s)
Lantana/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Biomarkers/analysis , Gas Chromatography-Mass Spectrometry , Lantana/classification , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/analysis
19.
Environ Monit Assess ; 170(1-4): 585-98, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20033284

ABSTRACT

Recently, interest has developed for using essential oils from Western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood in commercial products such as pest repellents and cosmetics. In order to gauge the relative toxicological risk that these oils pose to freshwater and marine organisms, the acute aquatic toxicity of these oils was evaluated using OPPTS guidelines to the cladoceran Daphnia magna, the rainbow trout Oncorhynchus mykiss and the green alga Selenastrum capricornutum. For western juniper foliage oil, no toxicity was exhibited toward D. magna or O. mykiss, even at 5.0 mg/L (the highest concentration tested and limit of solubility). For toxicity to S. capricornutum using algal cell density, the 72 and 96 h EC50 value was 1.7 mg/L and the no observable effect concentration (NOEC) was 0.63 mg/L. For Port Orford cedar heartwood oil, no toxicity was exhibited toward O. mykiss or S. capricornutum, even at 5.0 mg/L (the highest concentration tested and limit of solubility). The 48-h D. magna EC50 value was 1.9 mg/L; the NOEC values for algal cell density were 1.25 mg/L (72 h) and 0.63 mg/L (96 h). In summary, this study shows that western juniper foliage and Port Orford cedar heartwood oils demonstrate little to no risk to aquatic organisms.


Subject(s)
Chamaecyparis/toxicity , Juniperus/toxicity , Plant Leaves/toxicity , Plant Oils/toxicity , Water Pollutants/toxicity , Animals , Chlorophyta/drug effects , Daphnia/drug effects , Oncorhynchus mykiss , Plant Oils/chemistry , Toxicity Tests , Water Pollutants/chemistry
20.
Chem Biodivers ; 5(5): 707-13, 2008 May.
Article in English | MEDLINE | ID: mdl-18493957

ABSTRACT

Iridoids and ecdysteroids are found in some genera of the family Verbenaceae. In such cases, they are used as chemotaxonomic markers for the difficult task of taxonomic identification by using morphological characteristics of plants belonging to this family. The present work describes the distribution of ecdysteroids in plants from the genus Vitex from a review of previous work on seventeen Vitex species. In addition, (13)C-NMR data of the main ecdysteroids found in this genus are described. This study attempted to summarize previous research on ecdysteroids distribution in Vitex species with the addition of (13)C-NMR analysis to further refine the characterization of these compounds in the Verbenaceae family.


Subject(s)
Ecdysteroids/chemistry , Vitex/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...