Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 363: 142772, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971445

ABSTRACT

Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.

2.
Plants (Basel) ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176847

ABSTRACT

In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha-1 to 3.29 t ha-1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.

3.
Plants (Basel) ; 12(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37111889

ABSTRACT

The rate of global environmental change is unprecedented, with climate change causing an increase in the oscillation and intensification of various abiotic stress factors that have negative impacts on crop production. This issue has become an alarming global concern, especially for countries already facing the threat of food insecurity. Abiotic stressors, such as drought, salinity, extreme temperatures, and metal (nanoparticle) toxicities, are recognized as major constraints in agriculture, and are closely associated with the crop yield penalty and losses in food supply. In order to combat abiotic stress, it is important to understand how plant organs adapt to changing conditions, as this can help produce more stress-resistant or stress-tolerant plants. The investigation of plant tissue ultrastructure and subcellular components can provide valuable insights into plant responses to abiotic stress-related stimuli. In particular, the columella cells (statocytes) of the root cap exhibit a unique architecture that is easily recognizable under a transmission electron microscope, making them a useful experimental model for ultrastructural observations. In combination with the assessment of plant oxidative/antioxidative status, both approaches can shed more light on the cellular and molecular mechanisms involved in plant adaptation to environmental cues. This review summarizes life-threatening factors of the changing environment that lead to stress-related damage to plants, with an emphasis on their subcellular components. Additionally, selected plant responses to such conditions in the context of their ability to adapt and survive in a challenging environment are also described.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35159655

ABSTRACT

Nanotechnology offers new opportunities for the development of novel materials and strategies that improve technology and industry. This applies especially to agriculture, and our previous field studies have indicated that zinc oxide nanoparticles provide promising nano-fertilizer dispersion in sustainable agriculture. However, little is known about the precise ZnO-NP effects on legumes. Herein, 1 mg·L-1 ZnO-NP spray was dispersed on lentil plants to establish the direct NP effects on lentil production, seed nutritional quality, and stress response under field conditions. Although ZnO-NP exposure positively affected yield, thousand-seed weight and the number of pods per plant, there was no statistically significant difference in nutrient and anti-nutrient content in treated and untreated plant seeds. In contrast, the lentil water stress level was affected, and the stress response resulted in statistically significant changes in stomatal conductance, crop water stress index, and plant temperature. Foliar application of low ZnO-NP concentrations therefore proved promising in increasing crop production under field conditions, and this confirms ZnO-NP use as a viable strategy for sustainable agriculture.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824795

ABSTRACT

Nano-fertilisers have only recently been introduced to intensify plant production, and there still remains inadequate scientific knowledge on their plant-related effects. This paper therefore compares the effects of two nano-fertilisers on common sunflower production under field conditions. The benefits arising from the foliar application of micronutrient-based zinc oxide fertiliser were compared with those from the titanium dioxide plant-growth enhancer. Both the zinc oxide (ZnO) and titanium dioxide (TiO2) were delivered by foliar application in nano-size at a concentration of 2.6 mg·L-1. The foliar-applied nanoparticles (NPs) had good crystallinity and a mean size distribution under 30 nm. There were significant differences between these two experimental treatments in the leaf surfaces' trichomes diversity, ratio, width, and length at the flower-bud development stage. Somewhat surprisingly, our results established that the ZnO-NPs treatment induced generally better sunflower physiological responses, while the TiO2-NPs primarily affected quantitative and nutritional parameters such as oil content and changed sunflower physiology to early maturation. There were no differences detected in titanium or zinc translocation or accumulation in the fully ripe sunflower seeds compared to the experimental controls, and our positive results therefore encourage further nano-fertiliser research.

SELECTION OF CITATIONS
SEARCH DETAIL
...