Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37962425

ABSTRACT

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Subject(s)
Archaea , Bacteria , Databases, Nucleic Acid , Metagenome , Archaea/genetics , Bacteria/genetics , Databases, Nucleic Acid/standards , Databases, Nucleic Acid/trends , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Internet , Molecular Sequence Annotation , Proteins/genetics
2.
Nucleic Acids Res ; 49(D1): D1020-D1028, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270901

ABSTRACT

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains nearly 200 000 bacterial and archaeal genomes and 150 million proteins with up-to-date annotation. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP) since 2018 have resulted in a substantial reduction in spurious annotation. The hierarchical collection of protein family models (PFMs) used by PGAP as evidence for structural and functional annotation was expanded to over 35 000 protein profile hidden Markov models (HMMs), 12 300 BlastRules and 36 000 curated CDD architectures. As a result, >122 million or 79% of RefSeq proteins are now named based on a match to a curated PFM. Gene symbols, Enzyme Commission numbers or supporting publication attributes are available on over 40% of the PFMs and are inherited by the proteins and features they name, facilitating multi-genome analyses and connections to the literature. In adherence with the principles of FAIR (findable, accessible, interoperable, reusable), the PFMs are available in the Protein Family Models Entrez database to any user. Finally, the reference and representative genome set, a taxonomically diverse subset of RefSeq prokaryotic genomes, is now recalculated regularly and available for download and homology searches with BLAST. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Molecular Sequence Annotation/methods , Proteins/genetics , Data Curation/methods , Data Mining/methods , Genomics/methods , Internet , Proteins/classification , User-Computer Interface
3.
Stand Genomic Sci ; 10: 37, 2015.
Article in English | MEDLINE | ID: mdl-26221418

ABSTRACT

Here we report a summary classification and the features of five anaerobic oral bacteria from the family Peptostreptococcaceae. Bacterial strains were isolated from human subgingival plaque. Strains ACC19a, CM2, CM5, and OBRC8 represent the first known cultivable members of "yet uncultured" human oral taxon 081; strain AS15 belongs to "cultivable" human oral taxon 377. Based on 16S rRNA gene sequence comparisons, strains ACC19a, CM2, CM5, and OBRC8 are distantly related to Eubacterium yurii subs. yurii and Filifactor alocis, with 93.2 - 94.4 % and 85.5 % of sequence identity, respectively. The genomes of strains ACC19a, CM2, CM5, OBRC8 and AS15 are 2,541,543; 2,312,592; 2,594,242; 2,553,276; and 2,654,638 bp long. The genomes are comprised of 2277, 1973, 2325, 2277, and 2308 protein-coding genes and 54, 57, 54, 36, and 28 RNA genes, respectively. Based on the distinct characteristics presented here, we suggest that strains ACC19a, CM2, CM5, and OBRC8 represent a novel genus and species within the family Peptostreptococcaceae, for which we propose the name Peptoanaerobacter stomatis gen. nov., sp. nov. The type strain is strain ACC19a(T) (=HM-483(T); =DSM 28705(T); =ATCC BAA-2665(T)).

4.
Genome Announc ; 2(1)2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24503986

ABSTRACT

Enterococcus faecium is commonly isolated from the human gastrointestinal tract; however, important intraspecies variations exist with relevance for host health and well-being. Here, we describe the draft genome sequence of E. faecium PC4.1, a clade B strain isolated from human feces.

5.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23469340

ABSTRACT

Enterococcus faecalis is commonly isolated from the gastrointestinal tract of healthy infants and adults, where it contributes to host health and well-being. We describe here the draft genome sequence of E. faecalis PC1.1, a candidate probiotic strain isolated from human feces.

6.
J Bacteriol ; 194(16): 4448-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22843585

ABSTRACT

Mycoplasma mycoides subsp. mycoides small colony biotype (SC) is the high-consequence animal pathogen causing contagious bovine pleuropneumonia. We report the complete genome sequences of the pathogenic strain M. mycoides subsp. mycoides SC Gladysdale and a close phylogenetic relative, Mycoplasma leachii PG50(T), another bovine pathogen of the M. mycoides phylogenetic clade.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Mycoplasma mycoides/genetics , Sequence Analysis, DNA , Animals , Cattle , Cattle Diseases/microbiology , Molecular Sequence Data , Mycoplasma mycoides/isolation & purification , Pleuropneumonia, Contagious/microbiology
7.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22792073

ABSTRACT

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Subject(s)
Genome, Bacterial , Plants , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Sequence Analysis, DNA , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Bacteriocins/genetics , Genetic Heterogeneity , Genetic Variation , Host-Pathogen Interactions/genetics , Insecta/genetics , Multigene Family , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plants/genetics , Plants/microbiology , Repetitive Sequences, Nucleic Acid/genetics , Resorcinols/metabolism
8.
J Bacteriol ; 193(15): 4025-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21622758

ABSTRACT

Although Bacteroides vulgatus is one of the most prevalent microorganisms in the human gastrointestinal tract, little is known about the genetic potential of this species. Here, we describe the annotated draft genome sequence of B. vulgatus PC510 isolated from human feces.


Subject(s)
Bacteroides/genetics , Bacteroides/isolation & purification , Feces/microbiology , Genome, Bacterial , Base Sequence , Humans , Molecular Sequence Data
9.
J Bacteriol ; 193(5): 1288-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183674

ABSTRACT

While the microbiota resident in the human gut is now known to provide a range of functions relevant to host health, many of the microbial members of the community have not yet been cultured or are represented by a limited number of isolates. We describe here the draft genome sequence of Turicibacter sanguinis PC909, isolated from a pooled healthy human fecal sample as part of the Australian Human Gut Microbiome Project.


Subject(s)
Feces/microbiology , Genome, Bacterial , Gram-Positive Bacteria/genetics , Humans , Molecular Sequence Data
10.
PLoS One ; 5(8): e12411, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20865041

ABSTRACT

BACKGROUND: Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9. PRINCIPAL FINDINGS: Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species. CONCLUSIONS: Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism.


Subject(s)
Gardnerella vaginalis/genetics , Gardnerella vaginalis/metabolism , Genomics , Vaginosis, Bacterial/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Gardnerella vaginalis/classification , Gardnerella vaginalis/pathogenicity , Humans , Male , Molecular Sequence Data , Phylogeny , Vagina/microbiology , Virulence
11.
Nucleic Acids Res ; 38(Database issue): D408-14, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843611

ABSTRACT

Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.


Subject(s)
Bacterial Infections/microbiology , Communicable Diseases/microbiology , Computational Biology/methods , Databases, Genetic , Amino Acid Sequence , Animals , Bacterial Infections/diagnosis , Computational Biology/trends , Genome, Bacterial , Humans , Information Storage and Retrieval/methods , Internet , Molecular Sequence Data , National Institute of Allergy and Infectious Diseases (U.S.) , Sequence Homology, Amino Acid , Software , United States
12.
PLoS One ; 4(7): e6085, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19568419

ABSTRACT

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.


Subject(s)
Bivalvia/microbiology , Genome, Bacterial , Marine Biology , Proteobacteria/genetics , Symbiosis , Wood , Animals , Bivalvia/metabolism , Computational Biology , Nitrogen/metabolism , Phylogeny , Polysaccharides/metabolism , Proteobacteria/classification , Proteobacteria/enzymology , Proteobacteria/physiology , Quorum Sensing , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
13.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201974

ABSTRACT

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Genome, Bacterial , Soil Microbiology , Anti-Bacterial Agents/biosynthesis , Biological Transport , Carbohydrate Metabolism , Cyanobacteria/genetics , DNA, Bacterial/chemistry , Fungi/genetics , Macrolides/metabolism , Molecular Sequence Data , Nitrogen/metabolism , Phylogeny , Proteobacteria/genetics , Sequence Analysis, DNA , Sequence Homology
14.
J Bacteriol ; 188(19): 6841-50, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16980487

ABSTRACT

The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.


Subject(s)
Alphaproteobacteria/genetics , Caulobacter crescentus/genetics , Genome, Bacterial , Alphaproteobacteria/cytology , Alphaproteobacteria/physiology , Bacterial Outer Membrane Proteins/genetics , Caulobacter crescentus/cytology , Caulobacter crescentus/physiology , Cell Cycle/genetics , Chemotaxis/genetics , Chemotaxis/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Flagella/physiology , Microbial Viability , Molecular Sequence Data , Movement , Sequence Analysis, DNA , Sequence Homology , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 103(36): 13555-9, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16938853

ABSTRACT

Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp. strain CC9311, has significant differences from an open ocean strain, Synechococcus sp. strain WH8102, and these are consistent with the differences between their respective environments. CC9311 has a greater capacity to sense and respond to changes in its (coastal) environment. It has a much larger capacity to transport, store, use, or export metals, especially iron and copper. In contrast, phosphate acquisition seems less important, consistent with the higher concentration of phosphate in coastal environments. CC9311 is predicted to have differences in its outer membrane lipopolysaccharide, and this may be characteristic of the speciation of some cyanobacterial groups. In addition, the types of potentially horizontally transferred genes are markedly different between the coastal and open ocean genomes and suggest a more prominent role for phages in horizontal gene transfer in oligotrophic environments.


Subject(s)
Adaptation, Physiological , Environment , Genome, Bacterial , Synechococcus/genetics , Synechococcus/physiology , Base Pairing , Base Sequence , Chromosomes, Bacterial , Frameshift Mutation , Models, Biological , Molecular Sequence Data , Open Reading Frames , Operon , Phylogeny , Point Mutation , RNA, Transfer
16.
PLoS Genet ; 1(5): e65, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16311624

ABSTRACT

We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.


Subject(s)
Carbon Monoxide/chemistry , Genome, Bacterial , Peptococcaceae/genetics , Base Sequence , Genes, Bacterial , Genomics , Hot Temperature , Models, Biological , Molecular Sequence Data , Oxidative Stress , Sequence Analysis, DNA
17.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16172379

ABSTRACT

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Subject(s)
Genome, Bacterial , Streptococcus agalactiae/classification , Streptococcus agalactiae/genetics , Amino Acid Sequence , Bacterial Capsules/genetics , Base Sequence , Gene Expression , Genes, Bacterial , Genetic Variation , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Streptococcus agalactiae/pathogenicity , Virulence/genetics
18.
J Bacteriol ; 187(18): 6488-98, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16159782

ABSTRACT

Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.


Subject(s)
Genes, Bacterial , Genome, Bacterial , Pseudomonas syringae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Pseudomonas syringae/classification , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Species Specificity , Virulence
19.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15980861

ABSTRACT

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Subject(s)
Genome, Bacterial , Pseudomonas fluorescens/genetics , Base Sequence , Biological Transport/genetics , Genes, Bacterial , Molecular Sequence Data , Multigene Family , Plants/microbiology , Pseudomonas fluorescens/metabolism , Sequence Analysis, DNA , Siderophores/biosynthesis , Siderophores/genetics
20.
J Bacteriol ; 187(7): 2426-38, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15774886

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the approximately 2.8-Mb genome of S. aureus COL, an early methicillin-resistant isolate, and the approximately 2.6-Mb genome of S. epidermidis RP62a, a methicillin-resistant biofilm isolate. Comparative analysis of these and other staphylococcal genomes was used to explore the evolution of virulence and resistance between these two species. The S. aureus and S. epidermidis genomes are syntenic throughout their lengths and share a core set of 1,681 open reading frames. Genome islands in nonsyntenic regions are the primary source of variations in pathogenicity and resistance. Gene transfer between staphylococci and low-GC-content gram-positive bacteria appears to have shaped their virulence and resistance profiles. Integrated plasmids in S. epidermidis carry genes encoding resistance to cadmium and species-specific LPXTG surface proteins. A novel genome island encodes multiple phenol-soluble modulins, a potential S. epidermidis virulence factor. S. epidermidis contains the cap operon, encoding the polyglutamate capsule, a major virulence factor in Bacillus anthracis. Additional phenotypic differences are likely the result of single nucleotide polymorphisms, which are most numerous in cell envelope proteins. Overall differences in pathogenicity can be attributed to genome islands in S. aureus which encode enterotoxins, exotoxins, leukocidins, and leukotoxins not found in S. epidermidis.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Methicillin Resistance/genetics , Staphylococcus aureus/genetics , Staphylococcus epidermidis/genetics , Biofilms , Chromosome Mapping , Gene Transfer, Horizontal , Genomic Islands , Molecular Sequence Data , Open Reading Frames , Phylogeny , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/metabolism , Staphylococcus epidermidis/pathogenicity , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...