Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(7): 8503-8509, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405521

ABSTRACT

Natural fiber-welded (NFW) biopolymer composites are rapidly garnering industrial and commercial attention in the textile sector, and a recent disclosure demonstrating the production of mesoporous NFW materials suggests a bright future as sorbents, filters, and nanoparticle scaffolds. A significant roadblock in the mass production of mesoporous NFW composites for research and development is their lengthy preparation time: 24 h of water rinses to remove the ionic liquid (IL) serving as a welding medium and then 72 h of solvent exchanges (polar to nonpolar), followed by oven drying to attain a mesoporous composite. In this work, the rinsing procedure is systematically truncated using the solution conductivity as a yardstick to monitor IL removal. The traditional water immersion rinses are replaced by a flow-through system (i.e., infinite dilution) using a peristaltic pump, reducing the required water rinse time for the maximum removal of IL to 30 min. This procedure also allows for easy in-line monitoring of solution conductivity and reclamation of an expensive welding solvent. Further, the organic solvent exchange is minimized to 10 min per solvent (from 24 h), resulting in a total combined rinse time of 1 h. This process acceleration reduces the overall solvent exposure time from 96 to 1 h, an almost 99% temporal improvement.

2.
ACS Macro Lett ; 12(12): 1654-1658, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38104265

ABSTRACT

Seemingly nonporous biopolymer composites prepared by natural fiber welding (NFW) possess latent pores that can be exfoliated by conscientious solvation. We present a seminal demonstration of this concept for cellulose and explore the impact of latent pores on the manufacture and commercialization of NFW products.

3.
Inorg Chem ; 62(44): 18280-18289, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37870915

ABSTRACT

In this work, a series of novel boronium-bis(trifluoromethylsulfonyl)imide [TFSI-] ionic liquids (IL) are introduced and investigated. The boronium cations were designed with specific structural motifs that delivered improved electrochemical and physical properties, as evaluated through cyclic voltammetry, broadband dielectric spectroscopy, densitometry, thermogravimetric analysis, and differential scanning calorimetry. Boronium cations, which were appended with N-alkylpyrrolidinium substituents, exhibited superior physicochemical properties, including high conductivity, low viscosity, and electrochemical windows surpassing 6 V. Remarkably, the boronium ionic liquid functionalized with both an ethyl-substituted pyrrolidinium and trimethylamine, [(1-e-pyrr)N111BH2][TFSI], exhibited a 6.3 V window, surpassing previously published boronium-, pyrrolidinium-, and imidazolium-based IL electrolytes. Favorable physical properties and straightforward tunability make boronium ionic liquids promising candidates to replace conventional organic electrolytes for electrochemical applications requiring high voltages.

4.
Environ Sci Technol ; 57(9): 3804-3816, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36880272

ABSTRACT

Peroxides find broad applications for disinfecting environmental pathogens particularly in the COVID-19 pandemic; however, the extensive use of chemical disinfectants can threaten human health and ecosystems. To achieve robust and sustainable disinfection with minimal adverse impacts, we developed Fe single-atom and Fe-Fe double-atom catalysts for activating peroxymonosulfate (PMS). The Fe-Fe double-atom catalyst supported on sulfur-doped graphitic carbon nitride outperformed other catalysts for oxidation, and it activated PMS likely through a nonradical route of catalyst-mediated electron transfer. This Fe-Fe double-atom catalyst enhanced PMS disinfection kinetics for inactivating murine coronaviruses (i.e., murine hepatitis virus strain A59 (MHV-A59)) by 2.17-4.60 times when compared to PMS treatment alone in diverse environmental media including simulated saliva and freshwater. The molecular-level mechanism of MHV-A59 inactivation was also elucidated. Fe-Fe double-atom catalysis promoted the damage of not only viral proteins and genomes but also internalization, a key step of virus lifecycle in host cells, for enhancing the potency of PMS disinfection. For the first time, our study advances double-atom catalysis for environmental pathogen control and provides fundamental insights of murine coronavirus disinfection. Our work paves a new avenue of leveraging advanced materials for improving disinfection, sanitation, and hygiene practices and protecting public health.


Subject(s)
COVID-19 , Murine hepatitis virus , Mice , Animals , Humans , Disinfection , Virus Inactivation , Ecosystem , Pandemics/prevention & control , Peroxides , Catalysis
5.
Environ Sci Technol ; 57(7): 2749-2757, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36745632

ABSTRACT

Graphitic carbon nitride (g-C3N4) nanomaterials hold great promise in diverse applications; however, their stability in engineering systems and transformation in nature are largely underexplored. We evaluated the stability, aging, and environmental impact of g-C3N4 nanosheets under the attack of free chlorine and reactive chlorine species (RCS), a widely used oxidant/disinfectant and a class of ubiquitous radical species, respectively. g-C3N4 nanosheets were slowly oxidized by free chlorine even at a high concentration of 200-1200 mg L-1, but they decomposed rapidly when ClO· and/or Cl2•- were the key oxidants. Though Cl2•- and ClO· are considered weaker oxidants in previous studies due to their lower reduction potentials and slower reaction kinetics than ·OH and Cl·, our study highlighted that their electrophilic attack efficacy on g-C3N4 nanosheets was on par with ·OH and much higher than Cl·. A trace level of covalently bonded Cl (0.28-0.55 at%) was introduced to g-C3N4 nanosheets after free chlorine and RCS oxidation. Our study elucidates the environmental fate and transformation of g-C3N4 nanosheets, particularly under the oxidation of chlorine-containing species, and it also provides guidelines for designing reactive, robust, and safe nanomaterials for engineering applications.


Subject(s)
Graphite , Nanostructures , Chlorine , Oxidants , Chlorides
6.
Phys Chem Chem Phys ; 25(8): 6342-6351, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36779353

ABSTRACT

Ion dynamics and charge transport in 1-methyl-3-octylimidazolium ionic liquids with chloride, bromide, tetrafluoroborate, tricyanomethanide, hexafluorophosphate, triflate, tetrachloroaluminate, bis(trifluoromethylsulfonyl)imide, and heptachlorodialuminate anions are investigated by broadband dielectric spectroscopy, rheology, viscometry, and differential scanning calorimetry. A detailed analysis reveals an anion and temperature-dependent separation of characteristic molecular relaxation rates extracted from various representations of the dielectric spectra. The separation in rates extracted from the electric modulus and conductivity formalisms is interpreted as an experimental signature of significant heterogeneity in the local ion dynamics associated with the structural glass transition, viscosity, and dc ion conductivity. It is further found that the degree of dynamic heterogeneity correlates with the strengths of slow dielectric and mechanical relaxations previously attributed to the dynamics of mesoscale solvophobic aggregates. Increasing local dynamic heterogeneity correlates with an increase in the strength of the slow, aggregate dielectric relaxation and a decrease in the strength of the slow, aggregate mechanical relaxation. Accordingly, increasing local dynamic heterogeneity, brought about by change in temperature and/or cation/anion chemical structure, correlates with an increase in the static dielectric permittivities and a decrease in the contribution of aggregate dynamics to the zero-shear viscosities. The established correlation provides a new ability to distinguish between the influence of mesoscale aggregate shape/morphology versus local and mesoscale ion dynamics on the transport properties of ionic liquids.

7.
Proteomics ; 23(5): e2200237, 2023 03.
Article in English | MEDLINE | ID: mdl-36480152

ABSTRACT

The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.


Subject(s)
Alligators and Crocodiles , Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Animals , Horses , Encephalitis Virus, Venezuelan Equine/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Encephalomyelitis, Venezuelan Equine/drug therapy , Encephalomyelitis, Venezuelan Equine/prevention & control , Bioprospecting , Virus Replication , Peptides
8.
J Hazard Mater ; 436: 129251, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35739770

ABSTRACT

Solar-driven photocatalytic generation of H2O2 over metal-free catalysts is a sustainable approach for value-added chemical production. Here, we synthesized chlorine-doped graphitic carbon nitride (Cl-doped g-C3N4) through a solvothermal method to effectively produce H2O2 with a rate of 1.19 ± 0.06 µM min-1 under visible light irradiation, which was improved by 104 times compared to pristine g-C3N4. Continuous net production of H2O2 was realized at a rate of 2.78 ± 0.10 µM min-1 up to 54 h with isopropanol as the hole scavenger, whereas H2O2 production was only sustained for ~ 6 h without scavengers. Both molecular simulations and advanced spectroscopic characterizations elucidated that the Cl dopant increased the charge transfer rate, decreased the bandgap, and reduced the activation energy of the rate-limiting step of O2 reduction, all of which favored H2O2 production. This work implemented a novel metal-free photocatalyst for sustainable H2O2 production and elucidated the mechanism for promoting H2O2 production that can guide future photoreactive nanomaterial design.

9.
Carbohydr Polym ; 282: 119040, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35123731

ABSTRACT

All-cellulose xerogel composites were fabricated using a facile, scalable three-step process-(1) partial ionic liquid dissolution, (2) non-solvent rinsing, and (3) drying. The xerogel composites are composed of two phases where the yarn center is non-porous highly crystalline cellulose I surrounded by mesoporous amorphous regenerated cellulose. The composite had high 149 m2 g-1 Brunauer-Emmett-Teller (BET) surface area with 11.7 nm average pore diameter. The porosity was calculated using density-based (ϕρ = 0.49) and volume-based (ϕV = 0.52) methods. The porosity evolution mechanism is attributed to non-solvent-induced polarity shifts, and these results are compared with non-porous morphologies produced by varying the choice in non-solvents. Although similar decrystallization behavior was measured for all samples, non-porous yarns had a smaller diameter and significantly reduced BET surface area (0.03 m2 g-1). The presented fabrication method offers controllable mesoporous phase formation along with freestanding structural capability towards the development of advanced functional cellulosic materials.

10.
Environ Sci Technol ; 55(18): 12414-12423, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34468124

ABSTRACT

Understanding the transformation of graphitic carbon nitride (g-C3N4) is essential to assess nanomaterial robustness and environmental risks. Using an integrated experimental and simulation approach, our work has demonstrated that the photoinduced hole (h+) on g-C3N4 nanosheets significantly enhances nanomaterial decomposition under •OH attack. Two g-C3N4 nanosheet samples D and M2 were synthesized, among which M2 had more pores, defects, and edges, and they were subjected to treatments with •OH alone and both •OH and h+. Both D and M2 were oxidized and released nitrate and soluble organic fragments, and M2 was more susceptible to oxidation. Particularly, h+ increased the nitrate release rate by 3.37-6.33 times even though the steady-state concentration of •OH was similar. Molecular simulations highlighted that •OH only attacked a limited number of edge-site heptazines on g-C3N4 nanosheets and resulted in peripheral etching and slow degradation, whereas h+ decreased the activation energy barrier of C-N bond breaking between heptazines, shifted the degradation pathway to bulk fragmentation, and thus led to much faster degradation. This discovery not only sheds light on the unique environmental transformation of emerging photoreactive nanomaterials but also provides guidelines for designing robust nanomaterials for engineering applications.


Subject(s)
Graphite , Nanostructures , Nitrogen Compounds
11.
J Hazard Mater ; 418: 126294, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34102366

ABSTRACT

We prepared a single-atom Fe catalyst supported on an oxygen-doped, nitrogen-rich carbon support (SAFe-OCN) for degrading a broad spectrum of contaminants of emerging concern (CECs) by activating peroxides such as peroxymonosulfate (PMS). In the SAFe-OCN/PMS system, most selected CECs were amenable to degradation and high-valent Fe species were present for oxidation. Moreover, SAFe-OCN showed excellent performance for contaminant degradation in complex water matrices and high stability in oxidation. Specifically, SAFe-OCN, with a catalytic center of Fe coordinated with both nitrogen and oxygen (FeNxO4-x), showed 5.13-times increased phenol degradation kinetics upon activating PMS compared to the catalyst where Fe was only coordinated with nitrogen (FeN4). Molecular simulations suggested that FeNxO4-x, compared to FeN4, was an excellent multiple-electron donor and it could potential-readily form high-valent Fe species upon oxidation. In summary, the single-atom Fe catalyst enables efficient, robust, and sustainable water and wastewater treatment, and molecular simulations highlight that the electronic nature of Fe could play a key role in determining the activity of the single-atom catalyst.


Subject(s)
Iron , Peroxides , Carbon , Catalysis , Oxidation-Reduction
12.
J Hazard Mater ; 408: 124890, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33370693

ABSTRACT

Photocatalysis holds promise for inactivating environmental pathogens. Visible-light-responsive composites of carbon-doped graphitic carbon nitride and chitosan with high reactivity and processability were fabricated, and they can control pathogenic biofilms for environmental, food, biomedical, and building applications. The broad-spectrum biofilm inhibition and eradication of the photocatalytic composites against Staphylococcus epidermidis, Pseudomonas aeruginosa PAO1, and Escherichia coli O157: H7 under visible light irradiation were demonstrated. Extracellular polymeric substances in Escherichia coli O157: H7 biofilms were most resistant to photocatalytic oxidation, which led to reduced performance for biofilm removal. 1O2 produced by the composites was believed to dominate biofilm inactivation. Moreover, the composites exhibited excellent performance for inhibiting biofilm development in urine, highlighting the promise for inactivating environmental biofilms developed from multiple bacterial species. Our study provides fundamental insights into the development of new photocatalytic composites, and elucidates the mechanism of how the photocatalyst reacts with a microbiological system.


Subject(s)
Chitosan , Biofilms , Catalysis , Graphite , Light , Nitrogen Compounds
13.
Environ Sci Technol Lett ; 8(7): 545-550, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-37566347

ABSTRACT

Airborne transmission of SARS-CoV-2 plays a critical role in spreading COVID-19. To protect public health, we designed and fabricated electrospun nanofibrous air filters that hold promise for applications in personal protective equipment (PPE) and the indoor environment. Due to ultrafine nanofibers (∼300 nm), the electrospun air filters had a much smaller pore size in comparison to the surgical mask and cloth masks (a couple of micrometers versus tens to hundreds of micrometers). A coronavirus strain served as a SARS-CoV-2 surrogate and was used to generate aerosols for filtration efficiency tests, which can better represent SARS-CoV-2 in comparison to other agents used for aerosol generation in previous studies. The electrospun air filters showed excellent performance by capturing up to 99.9% of coronavirus aerosols, which outperformed many commercial face masks. In addition, we observed that the same electrospun air filter or face mask removed NaCl aerosols equivalently or less effectively in comparison to the coronavirus aerosols when both aerosols were generated from the same system. Our work paves a new avenue for advancing air filtration by developing electrospun nanofibrous air filters for controlling SARS-CoV-2 airborne transmission.

14.
Chem Rev ; 120(20): 11651-11697, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32960589

ABSTRACT

Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be unintentionally formed or modified after CNTs are released into the environment through exposure to reactive oxygen species and/or ultraviolet irradiation. Consequently, it is important to understand the impact of CNT surface oxidation on the environmental fate, transport, and toxicity of CNTs. In this review, we describe the specific role of oxygen-containing functional groups on the important environmental behaviors of CNTs in aqueous media (e.g., colloidal stability, adsorption, and photochemistry) as well as their biological impact. We place special emphasis on the value of systematically varying and quantifying surface oxides as a route to identifying quantitative structure-property relationships. The role of oxygen-containing functional groups in regulating the efficacy of CNT-enabled water treatment technologies and the influence of surface oxides on other carbon-based nanomaterials are also evaluated and discussed.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Humans , Oxides/chemistry , Oxides/metabolism , Oxygen/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology
15.
J Hazard Mater ; 399: 123097, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32540711

ABSTRACT

Solar-energy-enabled photocatalysis is promising for sustainable water purification. However, photoreactor design, especially immobilizing nano-sized photocatalysts, remains a major barrier preventing industrial-scale application of photocatalysis. In this study, we immobilized photocatalytic graphitic carbon nitride on chitosan to produce g-C3N4/chitosan hydrogel beads (GCHBs), and evaluated GCHB photoreactivity for degrading phenol and emerging persistent micropollutants in a 3D printed compound parabolic collector (CPC) reactor. The CPC photocatalytic system showed comparable performance with slurry reactors for sulfamethoxazole and carbamazepine degradation under simulated sunlight, and it maintained the performance for contaminant removal in real water samples collected from water/wastewater treatment plants or under outdoor sunlight irradiation. Global drinking water production was estimated for the CPC system, and it holds promise for small-scale sustainable water treatment, including, but not limited to, the production of high-quality potable water for single houses, small communities, rural areas, and areas impacted by natural disasters in both developed and developing countries.

16.
Sci Total Environ ; 668: 234-244, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30852200

ABSTRACT

Commercially available lumber, pressure-treated with micronized copper azole (MCA), has largely replaced other inorganic biocides for residential wood treatment in the USA, yet little is known about how different outdoor environmental conditions impact the release of ionic, nano-scale, or larger (micron-scale) copper from this product. Therefore, we weathered pressure treated lumber for 18 months in five different climates across the continental United States. Copper release was quantified every month and local weather conditions were recorded continuously to determine the extent to which local climate regulated the release of copper from this nano-enabled product during its use phase. Two distinct release trends were observed: In cooler, wetter climates release occurred primarily during the first few months of weathering, as the result of copper leaching from surface/near-surface areas. In warmer, drier climates, less copper was initially released due to limited precipitation. However, as the wood dried and cracked, the exposed copper-bearing surface area increased, leading to increased copper release later in the product lifetime. Single-particle-ICP-MS results from laboratory prepared MCA-wood leachate solutions indicated that a) the predominant form of released copper passed through a filter smaller than 0.45 micrometers and b) released particles were largely resistant to dissolution over the course of 6 wks. Toxicity Characteristic Leaching Procedure (TCLP) testing was conducted on nonweathered and weathered MCA-wood samples to simulate landfill conditions during their end-of-life (EoL) phase and revealed that MCA wood released <10% of initially embedded copper. Findings from this study provide data necessary to complete a more comprehensive evaluation of the environmental and human health impacts introduced through release of copper from pressure treated lumber utilizing life cycle assessment (LCA).

17.
ACS Appl Mater Interfaces ; 9(33): 27421-27426, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28796946

ABSTRACT

Novel Pd-based catalysts (i.e., Pd and Pd-Cu) supported on graphitic carbon nitride (g-C3N4) were prepared for nitrite and nitrate hydrogenation. The catalysts prepared by ethylene glycol reduction exhibited ultrafine Pd and Pd-Cu nanoparticles (∼2 nm), and they showed high reactivity, high selectivity toward nitrogen gas over byproduct ammonium, and excellent stability over multiple reaction cycles. The unique nitrogen-abundant surface, porous structure, and hydrophilic nature of g-C3N4 facilitates metal nanoparticle dispersion, mass transfer of reactants, and nitrogen coupling for nitrogen gas production to improve catalytic performance.

18.
Environ Sci Technol ; 50(23): 12938-12948, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27934277

ABSTRACT

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.


Subject(s)
Graphite/chemistry , Water Purification , Catalysis , Light , Phenols
19.
ACS Appl Mater Interfaces ; 8(28): 17739-44, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27387354

ABSTRACT

We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...