Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Imaging ; 80: 58-66, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34246044

ABSTRACT

PURPOSE: Comparison of deep learning algorithm, radiomics and subjective assessment of chest CT for predicting outcome (death or recovery) and intensive care unit (ICU) admission in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: The multicenter, ethical committee-approved, retrospective study included non-contrast-enhanced chest CT of 221 SARS-CoV-2 positive patients from Italy (n = 196 patients; mean age 64 ± 16 years) and Denmark (n = 25; mean age 69 ± 13 years). A thoracic radiologist graded presence, type and extent of pulmonary opacities and severity of motion artifacts in each lung lobe on all chest CTs. Thin-section CT images were processed with CT Pneumonia Analysis Prototype (Siemens Healthineers) which yielded segmentation masks from a deep learning (DL) algorithm to derive features of lung abnormalities such as opacity scores, mean HU, as well as volume and percentage of all-attenuation and high-attenuation (opacities >-200 HU) opacities. Separately, whole lung radiomics were obtained for all CT exams. Analysis of variance and multiple logistic regression were performed for data analysis. RESULTS: Moderate to severe respiratory motion artifacts affected nearly one-quarter of chest CTs in patients. Subjective severity assessment, DL-based features and radiomics predicted patient outcome (AUC 0.76 vs AUC 0.88 vs AUC 0.83) and need for ICU admission (AUC 0.77 vs AUC 0.0.80 vs 0.82). Excluding chest CT with motion artifacts, the performance of DL-based and radiomics features improve for predicting ICU admission. CONCLUSION: DL-based and radiomics features of pulmonary opacities from chest CT were superior to subjective assessment for differentiating patients with favorable and adverse outcomes.


Subject(s)
COVID-19 , Deep Learning , Aged , Aged, 80 and over , Humans , Lung/diagnostic imaging , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
2.
Med Phys ; 48(9): 5179-5191, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34129688

ABSTRACT

PURPOSE: In the literature on automated phenotyping of chronic obstructive pulmonary disease (COPD), there is a multitude of isolated classical machine learning and deep learning techniques, mostly investigating individual phenotypes, with small study cohorts and heterogeneous meta-parameters, e.g., different scan protocols or segmented regions. The objective is to compare the impact of different experimental setups, i.e., varying meta-parameters related to image formation and data representation, with the impact of the learning technique for subtyping automation for a variety of phenotypes. The identified associations of these parameters with automation performance and their interactions might be a first step towards a determination of optimal meta-parameters, i.e., a meta-strategy. METHODS: A clinical cohort of 981 patients (53.8 ± 15.1 years, 554 male) was examined. The inspiratory CT images were analyzed to automate the diagnosis of 13 COPD phenotypes given by two radiologists. A benchmark feature set that integrates many quantitative criteria was extracted from the lung and trained a variety of learning algorithms on the first 654 patients (two thirds) and the respective algorithm retrospectively assessed the remaining 327 patients (one third). The automation performance was evaluated by the area under the receiver operating characteristic curve (AUC). 1717 experiments were conducted with varying meta-parameters such as reconstruction kernel, segmented regions and input dimensionality, i.e., number of extracted features. The association of the meta-parameters with the automation performance was analyzed by multivariable general linear model decomposition of the automation performance in the contributions of meta-parameters and the learning technique. RESULTS: The automation performance varied strongly for varying meta-parameters. For emphysema-predominant phenotypes, an AUC of 93%-95% could be achieved for the best meta-configuration. The airways-predominant phenotypes led to a lower performance of 65%-85%, while smooth kernel configurations on average were unexpectedly superior to those with sharp kernels. The performance impact of meta-parameters, even that of often neglected ones like the missing-data imputation, was in general larger than that of the learning technique. Advanced learning techniques like 3D deep learning or automated machine learning yielded inferior automation performance for non-optimal meta-configurations in comparison to simple techniques with suitable meta-configurations. The best automation performance was achieved by a combination of modern learning techniques and a suitable meta-configuration. CONCLUSIONS: Our results indicate that for COPD phenotype automation, study design parameters such as reconstruction kernel and the model input dimensionality should be adapted to the learning technique and may be more important than the technique itself. To achieve optimal automation and prediction results, the interaction between input those meta-parameters and the learning technique should be considered. This might be particularly relevant for the development of specific scan protocols for novel learning algorithms, and towards an understanding of good study design for automated phenotyping.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Automation , Humans , Male , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
3.
J Digit Imaging ; 34(2): 320-329, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33634416

ABSTRACT

To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ -200 HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity with and without motion artifacts (AUC 0.94-0.97) as well as for predicting patient outcome (AUC 0.7-0.77) (p > 0.5). Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76-0.82, 95% confidence interval (CI) 0.73-0.82) had higher AUC for predicting ICU admission than the subjective severity scores (AUC 0.69-0.77, 95% CI 0.69-0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opacities from chest CT can help differentiate patients with favorable and adverse outcomes.


Subject(s)
COVID-19 , Adult , Female , Humans , Lung/diagnostic imaging , Male , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
4.
Article in English | MEDLINE | ID: mdl-25570615

ABSTRACT

Static posturography is an important measurement in the diagnostic workup for patients with postural instability. New wearable sensor technologies enable researchers to use in-shoe pressure soles in the home environment and outdoor applications. In this study a newly developed in-shoe pressure sole was used for calculating the sway path and 95% confidence ellipse area as the standard parameters of typical static posturography. Insole posturography was validated on 24 subjects by a state of the art pressure plate assessment during three static posturography conditions (eyes open, eyes closed and barefoot). The adaptive low pass filtered data resulted in an overall correlation of 0.63 to 0.78 for the sway path and 0.66 to 0.79 for the 95% confidence ellipse area. Individual correlations of up to 0.97 for the sway path and 0.99 for the 95% confidence ellipse area could be obtained. Future applications could utilize the mobile advantage of in-shoe pressure soles and measure static and dynamic posturography in clinical and home environments.


Subject(s)
Foot Orthoses , Posture/physiology , Pressure , Adult , Female , Humans , Male , Postural Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...