Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-19444991

ABSTRACT

N-Acetyl-L-cysteine, a low-molecular weight thiol compound, with two different doses was used to prevent fenthion, an organophosphorus insecticide and acaricide, related oxidative stress in the brain of a model organism, Cyprinus carpio. Fish were exposed to sub-lethal and nominal concentration of fenthion after intraperitoneal injection of 0.5 or 400 mg/kg NAC. Brain tissues were then dissected and homogenized to analyse GSH, GSSG, TBARS, and protein contents. Enzymes that constitute the first line antioxidant defence, namely SOD and CAT, GSH-related enzymes, GR and GST, together with AChE activities were also determined spectrophotometrically. Fenthion did not cause any alteration in SOD and CAT activities while increasing GSH content, GSH/GSSG ratio and GST specific enzyme activity and decreasing GSSG, TBARS, and protein contents. Although, the highest induction in SOD and GST enzymes activities and the highest increase in GSH content were observed in the 0.5 mg/kg NAC-injected fish, their protein contents showed a decrease. 400 mg/kg NAC impeded the activation of the GST enzyme and a higher decrease in lipid peroxidation was observed. Fish were also protected against protein depletion by the higher dose NAC application. AChE activity was not influenced by fenthion exposure. Xenobiotic and GSH transporters may cause mild oxidative stress conditions in brain. Cellular redox status could trigger a series of reactions that result in an increase in SOD activity and a decrease in protein content. Based on the present results, it was suggested that the usefulness of NAC against fenthion depends on applied dose and tissue characteristics. Species-specifity and concentration selection should be taken into consideration in studies dealing with anticholinesterases.


Subject(s)
Acetylcysteine/pharmacology , Brain/drug effects , Brain/metabolism , Carps/metabolism , Fenthion/toxicity , Animals , Antioxidants/metabolism , Dose-Response Relationship, Drug , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology
2.
Drug Chem Toxicol ; 31(3): 353-69, 2008.
Article in English | MEDLINE | ID: mdl-18622870

ABSTRACT

The objective of the present study was to evaluate the oxidative stress potential of low-level organophosphate fenthion exposure with the modulatory effect of buthionine sulfoximine in the liver of Cyprinus carpio L. The fish were exposed to 20% of 96-hour LC(50) of fenthion for 24 and 96 hours. Total and oxidized glutathione, thiobarbituric acid reactive substances, protein levels, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, and catalase-specific enzyme activities were measured spectrophotometrically. There was a 15-day depuration period to evaluate the changes in the studied parameters. Fenthion caused a time-dependent depletion of the total and reduced glutathione levels. The oxidized/reduced glutathione ratio and catalase specific enzyme activity were reduced while the glutathione-S-transferase activity was elevated. Intraperitonal buthionine sulfoximine application disclosed the inhibitory effect of fenthion on superoxide dismutase and glutathione peroxidase activities, whereas glutathione-S-transferase activity was increased. There was no change in lipid peroxidation levels during the experiments. No amelioration was observed in the affected parameters except the glutathione-S-transferase activity in the 15-day depuration period. In conclusion, glutathione-S-transferase and catalase enzyme activities and total and reduced glutathione levels were better estimators to monitor the effects of fenthion in low concentration in the liver of C. carpio. The depuration period was not adequate to recover the antioxidant capacity.


Subject(s)
Buthionine Sulfoximine/pharmacology , Enzyme Inhibitors/pharmacology , Fenthion/toxicity , Oxidative Stress/drug effects , Animals , Carps , Catalase/drug effects , Catalase/metabolism , Fenthion/administration & dosage , Glutathione/drug effects , Glutathione/metabolism , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/metabolism , Glutathione Transferase/drug effects , Glutathione Transferase/metabolism , Insecticides/administration & dosage , Insecticides/toxicity , Lethal Dose 50 , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Oxidation-Reduction/drug effects , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Time Factors
3.
Toxicol Mech Methods ; 17(6): 317-24, 2007.
Article in English | MEDLINE | ID: mdl-20020955

ABSTRACT

ABSTRACT Although its usage is partially banned in developed countries, organophosphate (OP) pesticide diazinon finds extensive agricultural application in our country (Turkey). This study was conducted to evaluate the effects of diazinon on total glutathione (tGSH), GSH-related enzymes, cholinesterase (ChE) enzyme activities, and lipid peroxidation in the liver of Oreochromis niloticus, a freshwater fish, as a model organism. Fish were exposed to 0.1, 1, and 2 mg/L sublethal concentrations of diazinon for 1, 7, 15, and 30 days. Total GSH levels, GSH-related enzyme and ChE-specific activities, and malondialdehyde (MDA) levels were analyzed using spectrophotometric methods. tGSH levels are decreased at 1 day, while they were increased in the long-term period. GSH-related enzyme activities are affected by diazinon exposure, except glutathione reductase (GR; EC 1.6.2.4). Diazinon displayed an oxidative stress-inducing potential and it increased lipid peroxidation. Similar inhibition levels were observed in acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8.) enzyme activities, and these inhibitions were not dose dependent. ChE inhibition-related oxidative stress was observed using its correlation with elevated tGSH levels and increased glutathione S-transferase (GST; EC 2.5.1.18) enzyme activities; that reflects the diazinon-induced oxidative stress in the liver of O. niloticus. According to the results of the present study, tGSH level and GST-specific activity are suitable for reflecting the toxic effects of diazinon in fish.

4.
Environ Toxicol Pharmacol ; 21(3): 241-5, 2006 May.
Article in English | MEDLINE | ID: mdl-21783664

ABSTRACT

The aim of this study was to investigate the effects of organophosphorus (OP) pesticide diazinon on acetylcholinesterase (AChE: EC 3.1.1.7) activity and its relationship to lipid peroxidation (LPO) in the brain of a freshwater fish, Oreochromis niloticus. Malondialdehyde (MDA) content was used as biomarker for LPO. Fish were exposed to 1 and 2mg/L sublethal concentrations of diazinon for 1, 7, 15 and 30 days. In the entire experimental group, AChE activity in brain significantly decreased (up to 93% of control), whereas MDA content decreased after 1 day, and increased after 7 and 15 days of exposures. MDA was in similar level with the control group after diazinon exposure of 30 days. The findings of the present study show that diazinon inhibited AChE activity and it has LPO-inducing potential in fish. The inhibition of AChE activity in the brain of O. niloticus correlated with increased MDA levels after 7 and 15 days diazinon exposures (r=-0.661, P<0.019; r=-0.652, P<0.022, respectively).

SELECTION OF CITATIONS
SEARCH DETAIL
...