Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(10): 13611-13618, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33054170

ABSTRACT

Semiconducting monolayers of a 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T' phase transition in a suspended 2D monolayer membrane of MoS2. Electronic transport shows unexpected memristive properties in the MoS2 membrane, in the absence of any external dopants. A strong mechanical softening of the membrane is measured concurrently and may only be related to the 2H-1T' phase transition, which imposes a 3% directional elongation of the topological 1T' phase with respect to the semiconducting 2H. We note that only a few percent 2H-1T' phase switching is sufficient to observe measurable memristive effects. Our experimental results combined with first-principles total energy calculations indicate that sulfur vacancy diffusion plays a key role in the initial nucleation of the phase transition. Our study clearly shows that nanomechanics represents an ultrasensitive technique to probe the crystal phase transition in 2D materials or thin membranes. Finally, a better control of the microscopic mechanisms responsible for the observed memristive effect in MoS2 is important for the implementation of future devices.

2.
ACS Omega ; 5(26): 15828-15834, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32656403

ABSTRACT

Parylene C (PC) has attracted tremendous attention throughout the past few years due to its extraordinary properties such as high mechanical strength and biocompatibility. When used as a flexible substrate and combined with high-κ dielectrics such as aluminum oxide (Al2O3), the Al2O3/PC stack becomes very compelling for various applications in fields such as biomedical microsystems and microelectronics. For the latter, the atomic layer deposition of oxides is particularly needed as it allows the deposition of high-quality and nanometer-scale oxide thicknesses. In this work, atomic layer deposition (ALD) and electron beam physical vapor deposition (EBPVD) of Al2O3 on a 15 µm-thick PC layer are realized and their effects on the Al2O3/PC resulting stack are investigated via X-ray photoelectron spectroscopy combined with atomic force microscopy. An ALD-based Al2O3/PC stack is found to result in a nanopillar-shaped surface, while an EBPVD-based Al2O3/PC stack yields an expected smooth surface. In both cases, the Al2O3/PC stack can be easily peeled off from the reusable SiO2 substrate, resulting in a flexible Al2O3/PC film. These fabrication processes are economic, high yielding, and suitable for mass production. Although ALD is particularly appreciated in the semiconducting industry, EBPVD is here found to be better for the realization of the Al2O3/PC flexible substrate for micro- and nanoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...