Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 130(2): 732-42, 2008 Jan 16.
Article in English | MEDLINE | ID: mdl-18095689

ABSTRACT

On the basis of theoretical models and calculations, several alternating polymeric structures have been investigated to develop optimized poly(2,7-carbazole) derivatives for solar cell applications. Selected low band gap alternating copolymers have been obtained via a Suzuki coupling reaction. A good correlation between DFT theoretical calculations performed on model compounds and the experimental HOMO, LUMO, and band gap energies of the corresponding polymers has been obtained. This study reveals that the alternating copolymer HOMO energy level is mainly fixed by the carbazole moiety, whereas the LUMO energy level is mainly related to the nature of the electron-withdrawing comonomer. However, solar cell performances are not solely driven by the energy levels of the materials. Clearly, the molecular weight and the overall organization of the polymers are other important key parameters to consider when developing new polymers for solar cells. Preliminary measurements have revealed hole mobilities of about 1 x 10(-3) cm2 x V(-1) x s(-1) and a power conversion efficiency (PCE) up to 3.6%. Further improvements are anticipated through a rational design of new symmetric low band gap poly(2,7-carbazole) derivatives.

2.
J Phys Chem A ; 110(51): 13696-704, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181323

ABSTRACT

We present a study of the optical and photophysical properties of five ladder indolo[3,2-b]carbazoles, namely, M1, M2, M3, M4, and M5. The ground-state optimized structures were obtained by B3LYP/6-31G* density functional theory (DFT) calculations, whereas the optimization (relaxation) of the first singlet excited electronic state (S1) was performed using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. The excitation to the S1 state does not cause important changes in the geometrical parameters of the compounds, as corroborated by the small Stokes shifts. The excitation and emission energies have been obtained by employing the time-dependent density functional theory (TDDFT). For all the compounds, excitation to the S1 state is weakly allowed, whereas the S2 <-- S0 electronic transition of each oligomer possesses a much larger oscillator strength. The absorption and fluorescence spectra of the compounds have been recorded in chloroform. A reasonable agreement is obtained between TDDFT vertical transition energies and the (0,0) absorption and fluorescence bands. On one hand, the pattern of the aliphatic side chains does not affect the absorption and fluorescence maxima of the compounds. On the other hand, the replacement of aliphatic chains by phenyl or thiophene rings induces hypsochromic shifts in the absorption and fluorescence spectra. Finally, the fluorescence quantum yield and lifetime of the compounds in chloroform have been obtained. From these data, the radiative and nonradiative rate constants of the deactivation of the S1 state have been determined.

3.
J Chem Phys ; 122(10): 104303, 2005 Mar 08.
Article in English | MEDLINE | ID: mdl-15839725

ABSTRACT

The molecular structure of three ladder oligo(p-aniline)s, 5,11-diethyl-6,12-dimethylindolo[3,2-b]carbazole (DIMER 2P), 14-ethyl-5,8-dihydro-diindolo[3,2-b:2',3'-h]carbazole (TRIMER 2P), and 5,8,14-triethyl-diindolo[3,2-b:2',3'-h]carbazole (TRIMER 3P) were investigated by first principles calculations at the Hartree-Fock (HF6-31G*) and density functional theory (DFTB3LYP6-31G*) levels. It is found that the agreement between theoretical and x-ray geometrical parameters is good and rather similar for both theoretical methods. The nature and the energy of the first two singlet-singlet electronic transitions have been obtained by Zerner intermediate neglect of differential overlap/spectroscopy semiempirical calculations performed on the HF6-31G* and DFTB3LYP6-31G* optimized geometries, as well as time-dependent density functional theory (TDDFT) calculations performed on the DFTB3LYP6-31G* optimized structures. For all the compounds and for all the theoretical approaches, it is observed that the S(1)<--S(0) electronic transition (pipi*) is weakly allowed and polarized along the short axis (y) of the molecule. On the other hand, the S(2)<--S(0) electronic transition of each oligomer possesses a much larger oscillator strength and is polarized along the long (x) molecular axis. It is found that TDDFT calculations provide the best overall agreement between the energies and the corresponding optical transitions obtained from the absorption bands (0-0 peaks) measured in dichloromethane as well as providing a good evaluation of the bathochromic shifts caused by the increase in the conjugation length or by the presence of extra alkyl chains on the nitrogen atoms in TRIMER 3P compared to TRIMER 2P.

4.
J Phys Chem A ; 109(31): 6953-9, 2005 Aug 11.
Article in English | MEDLINE | ID: mdl-16834054

ABSTRACT

A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...