Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 9(1)2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30587770

ABSTRACT

With the goal of accurately detecting and quantifying the amounts of dopamine (DA) and serotonin (5-HT) in mixtures of these neurotransmitters without using any labelling, we present a detailed, comparative computational and Raman experimental study. Although discrimination between these two analytes is achievable in such mixtures for concentrations in the millimolar range, their accurate quantification remains unattainable. As shown for the first time in this work, the formation of a new composite resulting from their interactions with each other is the main reason for this lack of quantification. While this new hydrogen-bonded complex further complicates potential analyte discrimination and quantification at concentrations characteristic of physiological levels (i.e., nanomolar concentrations), it can also open new avenues for its use in drug delivery and pharmaceutical research. This remark is based not only on chemical interactions analyzed here from both theoretical and experimental approaches, but also on biological relationship, with consideration of both functional and neural proximity perspectives. Thus, this research constitutes an important contribution toward better understanding of neural processes, as well as toward possible future development of label-free biosensors.


Subject(s)
Biosensing Techniques , Dopamine/analysis , Neurotransmitter Agents/analysis , Serotonin/analysis , Density Functional Theory , Humans , Spectrum Analysis, Raman
2.
Biosensors (Basel) ; 7(4)2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28956820

ABSTRACT

A combined theoretical and experimental analysis of dopamine (DA) is presented in this work with the objective of achieving more accurate detection and monitoring of this neurotransmitter at very low concentrations, specific to physiological levels. Surface-enhanced Raman spectroscopy on silver nanoparticles was employed for recording DA concentrations as low as 10-11 molar. Quantum chemical density functional calculations were carried out using Gaussian-09 analytical suite software. Relatively good agreement between the simulated and experimentally determined results indicates the presence of different DA molecular forms, such as uncharged DA±, anionic DA-, and dopaminequinone. Disappearance of the strongest bands of dopamine around 750 cm-1 and 790 cm-1, which suggests its adsorption onto the metallic surface, is not only consistent with all of these DA configurations, but also provides additional information about the analyte's redox process and voltammetric detection. On the other hand, occurrence of the abovementioned Raman lines could indicate the formation of multilayers of DA or its presence in a cationic DA⁺ form. Thus, through coordinated experiment and theory, valuable insights into changes observed in the vibrational signatures of this important neurotransmitter can be achieved for a better understanding of its detection at physiological levels, which is crucial if further optovoltammetric medical device development is envisioned.


Subject(s)
Dopamine/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods
3.
Technol Cancer Res Treat ; 16(4): 461-469, 2017 08.
Article in English | MEDLINE | ID: mdl-27381847

ABSTRACT

Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for further label-free optical tools to diagnose the disease.


Subject(s)
Breast Neoplasms/diagnostic imaging , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Female , Humans , MCF-7 Cells , Microscopy, Confocal , Spectrum Analysis, Raman , Staining and Labeling
4.
J Mater Sci ; 49(16): 5782-5789, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25328245

ABSTRACT

Boron-doped diamond (BDD) has seen a substantial increase in interest for use as electrode coating material for electrochemistry and studies of deep brain stimulation mechanism. In this study, we present an alternative method for determining important characteristics, including conductivity, carrier concentration, and time constant, of such material by the signature of Drude-like metallic behavior in the far-infrared (IR) spectral range. Unlike the direct determination of conductivity from the four-point probe method, using far-IR transmittance provides additional information, such as whether the incorporation of boron results in a large concentration of carriers or in inducing defects in the diamond lattice. The slightly doped to medium-doped BDD samples that were produced using chemical vapor deposition and analyzed in this work show conductivities ranging between 5.5 and 11 (Ω cm)-1. Different growth conditions demonstrate that increasing boron concentration results in an increase in the carrier concentration, with values between 7.2 × 1016 and 2.5 × 1017 carriers/cm3. Addition of boron, besides leading to a decrease in the resistivity, also resulted in a decrease in the time constant, limiting BDD conductivity. Investigations, by confocal Raman mapping, of the induced stress in the material due to interaction with the substrate or to the amount of doping are also presented and discussed. The induced tensile stress, which was distributed closer to the film-substrate interface decreased slightly with doping.

5.
Neuromodulation ; 16(3): 192-9; discussion 198-9, 2013.
Article in English | MEDLINE | ID: mdl-22989218

ABSTRACT

OBJECTIVES: We demonstrate that confocal Raman mapping spectroscopy provides rapid, detailed, and accurate neurotransmitter analysis, enabling millisecond time resolution monitoring of biochemical dynamics. As a prototypical demonstration of the power of the method, we present real-time in vitro serotonin, adenosine, and dopamine detection, and dopamine diffusion in an inhomogeneous organic gel, which was used as a substitute for neurologic tissue. MATERIALS AND METHODS: Dopamine, adenosine, and serotonin were used to prepare neurotransmitter solutions in distilled water. The solutions were applied to the surfaces of glass slides, where they interdiffused. Raman mapping was achieved by detecting nonoverlapping spectral signatures characteristic of the neurotransmitters with an alpha 300 WITec confocal Raman system, using 532 nm neodymium-doped yttrium aluminum garnet laser excitation. Every local Raman spectrum was recorded in milliseconds and complete Raman mapping in a few seconds. RESULTS: Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific microscale image regions. Such information is particularly important for complex, heterogeneous samples, where changes in composition can influence neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method. CONCLUSIONS: Accurate nondestructive characterization for real-time detection of neurotransmitters in inhomogeneous environments without the requirement of sample labeling is a key issue in neuroscience. Our work demonstrates the capabilities of Raman spectroscopy in biological applications, possibly providing a new tool for elucidating the mechanism and kinetics of deep brain stimulation.


Subject(s)
Microscopy, Confocal , Neurotransmitter Agents/analysis , Spectrum Analysis, Raman/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...