Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 106(4): 959-970, 2018 04.
Article in English | MEDLINE | ID: mdl-29143459

ABSTRACT

Engineering artificial extracellular matrices, based on the biomimicry of the spatial distribution of proteins and growth factors within their native microenvironment, is of great importance for understanding mechanisms of bone tissue regeneration. Herein, photolithography is used to decorate glass surfaces with subcellular patterns of RGD and BMP-2 ligands; two mimetic peptides recognized to be involved in stem cells osteogenesis. The biological relevance of well-defined RGD and BMP-2 patterned surfaces is evaluated by investigating the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts, in the absence of induction media. The extent of hMSCs differentiation is revealed to be dependent on both the pattern shape and the ligand type. Indeed, the spatial patterning of BMP-2, but not RGD peptide, significantly enhances the extent of hMSCs differentiation, suggesting that geometric cues guide stem cells specification into specialized cells in a ligand type dependent manner. Such cell culture models provide an interesting tool to investigate how stem cells perceive and respond to their microenvironment and may contribute to the development of next-generation biomaterials capable of producing clinically relevant volume of bone tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 959-970, 2018.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Mesenchymal Stem Cells/cytology , Oligopeptides/pharmacology , Osteogenesis , Transforming Growth Factor beta/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Humans , Interferometry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Recombinant Proteins/pharmacology , Surface Properties
2.
Acta Biomater ; 36: 132-42, 2016 05.
Article in English | MEDLINE | ID: mdl-27000551

ABSTRACT

UNLABELLED: Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. STATEMENT OF SIGNIFICANCE: For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This manuscript shed light on other ligands that play a crucial role in regulating MSCs fate. In concrete terms, it was demonstrated that the osteoinductive effect of BMP-2 peptide is 2 folds improved in the presence of adhesive RGD peptide. Compared to previous works highlighting this synergistic cooperation between RGD and BMP-2 peptides, the main strength of this work lies to the use of primitive human cells (hMSCs) and well-defined biomimetic material surfaces (controlled surface roughness and peptide densities). This work provides valuable insights to develop custom-designed in vitro cell culture models, capable of targeting the desired cell response.


Subject(s)
Biomimetic Materials/pharmacology , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 2/pharmacology , Oligopeptides/pharmacology , Osteoblasts/metabolism , Osteogenesis/drug effects , Biomimetic Materials/chemistry , Bone Marrow Cells/cytology , Bone Morphogenetic Protein 2/chemistry , Cells, Cultured , Humans , Oligopeptides/chemistry , Osteoblasts/cytology
3.
Sci Rep ; 5: 8650, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25731090

ABSTRACT

Cell mechanics play a key role in several fundamental biological processes, such as migration, proliferation, differentiation and tissue morphogenesis. In addition, many diseased conditions of the cell are correlated with altered cell mechanics, as in the case of cancer progression. For this there is much interest in methods that can map mechanical properties with a sub-cell resolution. Here, we demonstrate an inverted pulsed opto-acoustic microscope (iPOM) that operates in the 10 to 100 GHz range. These frequencies allow mapping quantitatively cell structures as thin as 10 nm and resolving the fibrillar details of cells. Using this non-invasive all-optical system, we produce high-resolution images based on mechanical properties as the contrast mechanisms, and we can observe the stiffness and adhesion of single migrating stem cells. The technique should allow transferring the diagnostic and imaging abilities of ultrasonic imaging to the single-cell scale, thus opening new avenues for cell biology and biomaterial sciences.


Subject(s)
Single-Cell Analysis/methods , Ultrasonography/methods , Acoustics , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Microscopy, Acoustic/methods , Optical Imaging/methods
4.
Colloids Surf B Biointerfaces ; 75(1): 107-14, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19775874

ABSTRACT

In order to avoid the problems related to biomaterial use (inflammation, infections, aseptic loosening, etc.), a new approach consisting of associating the material and autologous cells before implantation is being developed, thus requiring a perfect cooperation between the material's surface and the cell. To improve cell adhesion to biomaterials, a suitable method is to functionalize their surface by pro-adhesive ligand grafting. The aim of this study was to covalently graft RGD containing peptides onto a poly-(ethylene terephthalate) surface in well-defined microstructures in order to control MC3T3 cell adhesion. We followed two different routes for obtaining micro-patterned materials: (1) a photoablation technique using an excimer laser and (2) a photolithography process. The resulting patterns were characterized by optical microscopy, scanning electron microscopy, optical profilometry and high resolution mu-imager. The biological evaluation of cell adhesion onto the micro-patterned surfaces was carried out using optical microscopy, scanning electron microscopy and fluorescence microscopy. Cells seeded onto photolithographical or photoablated micro-patterned PET exhibited an alignment with the RGD domains and appear to be connecting through pseudopods extending towards each other. Whatever the technique used to create micro-patterns, a cell alignment occurs once the thickness of the RGD line reaches approximately 100 microm. These results prove the importance of microstructured surfaces for the elaboration of tissue engineered biomaterials.


Subject(s)
Oligopeptides/pharmacology , Tissue Engineering/methods , Animals , Cell Adhesion/drug effects , Lasers, Excimer , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/ultrastructure , Surface Properties/drug effects
5.
Ultrasonics ; 50(2): 202-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19879618

ABSTRACT

A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection, and acoustic frequencies as high as 11 GHz can be detected, as reported in this paper. The technique offers perspectives for single cell imaging. The in-plane resolution is limited by the pump and probe spot sizes, i.e. approximately 1 microm, and the in-depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate the reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non-invasive technique in the fields of bio-engineering and medicine.


Subject(s)
Acoustics/instrumentation , Allium , Cells/radiation effects , Optics and Photonics/instrumentation , Absorption , In Vitro Techniques , Lasers , Reproducibility of Results , Scattering, Radiation , Temperature , Titanium
6.
Article in English | MEDLINE | ID: mdl-18003155

ABSTRACT

Titanium alloys exhibit excellent biocompatibility and corrosion resistance in the body fluid and possess mechanical properties similar of the bones' properties. When the loss of osseous is important in osseous surgery, large biomaterials are implanted and should be accepted by the organism. For increasing the biomaterials biocompatibility, biological compounds can be linked or deposited on the material surface making them biologically active. In order to study the tissue-implant interaction and to favor osteoblast-adhesion onto titanium, our work deals with the grafting of cell-binding peptides containing the Arginine-Glycine-Aspartic acid (RGD) sequence. In the present study, we focus on the elaboration of patterned biomaterial surfaces with highly functionalized nanodomains. The strategy of RGD peptide immobilization involves first the grafting if an amino-functional organosilane (APTES). Then, each of the free amino moieties were used as an initiator core for a dendrimer-like synthesis to multiply the number of free groups available for RGD immobilization on the material surface.


Subject(s)
Coated Materials, Biocompatible/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Oligopeptides/chemistry , Titanium/chemistry , Adsorption , Bone Substitutes/chemistry , Crystallization/methods , Materials Testing , Particle Size , Protein Binding , Surface Properties
7.
Article in English | MEDLINE | ID: mdl-18003159

ABSTRACT

The aim of this study was to evaluate the impact of different densities on MC3T3 cells attachment onto Poly (ethylene terephthalate) (PET) film surfaces. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions onto PET surface, coupling agent grafting and finally immobilization of peptides. The originality of this work consist, in one hand on quantifying RGD peptides densities grafted onto PET, and on the other hand on studying MC3T3 cells responses after seeding on such biomimetic surfaces. After each functionalization step, modifications were validated by several physico-chemical techniques: X-Ray Photoelectron Spectroscopy allowed to prove the grafting and high-resolution micro-imager coupled with use of radiolabelled amino acids enabled the evaluation of peptides densities. Moreover, this last technique permit us to ensure stability of binding between peptides and polymer. The efficiency of this new route for biomimetic modification of PET surface was demonstrated by measuring the adhesion at 15h of osteoblast like cells. Study of cellular comportement was realised by means of focal contact proteins (vinculin, actin) immunostaining.


Subject(s)
Cell Adhesion/drug effects , Cell Adhesion/physiology , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , 3T3 Cells , Adsorption , Animals , Cell Culture Techniques/methods , Cell Survival , Coated Materials, Biocompatible/administration & dosage , Coated Materials, Biocompatible/chemistry , Mice , Polyethylene Terephthalates , Protein Binding
8.
Biomol Eng ; 24(5): 477-82, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17869172

ABSTRACT

The aim of this study was to graft RGD peptides with well controlled densities onto poly(ethylene terephthalate) (PET) film surfaces. Biomimetic modifications were performed by means of a four-step reaction procedure: surface modification in order to create -COOH groups onto polymer surface, coupling agent grafting and finally immobilization of peptides. The originality of this work is to evaluate several grafted densities peptides. Toluidine blue and high-resolution mu-imager (using [(3)H]-Lys) were used to evaluate densities. Moreover, mu-imager has exhibited the stability of peptides grafted onto the surface when treated under harsh conditions. Benefits of the as-proposed method were related to the different concentrations of peptides grafted onto the surface as well as the capacity of RGD peptide to interact with integrin receptors.


Subject(s)
Biocompatible Materials/chemistry , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Biomimetics , Lysine/chemistry , Membranes, Artificial , Molecular Structure , Polyethylene Glycols/radiation effects , Polyethylene Terephthalates , Surface Properties , Tolonium Chloride/chemistry , Tritium/chemistry , Ultraviolet Rays
9.
Biomed Mater Eng ; 16(4 Suppl): S53-60, 2006.
Article in English | MEDLINE | ID: mdl-16823113

ABSTRACT

In the field of osseous substitution, the possibilities being offered to the surgeons prove sometimes difficult to apply in particular in the case of great losses of osseous substance. For these reasons, it is necessary to develop innovative techniques to satisfy the request increasing for substitutes and to see appearing on the market solutions combining availability, perenniality and biosecurity of the implants. The implantation of stem cells in a biomaterial opens a way of development of therapeutic substitute. Moreover, in order to optimize the rehabitation of the biomaterials by the cells and the host tissues, the second approach consists in modifying the surface of materials by the coating or the grafting of adhesive factors in order to stimulate their colonization. At least, one cannot consider a tissue mechanism of repair without a better knowledge of the respective role of the various cell populations implied in the rebuilding of this tissue and their cell to cell communication processes.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Cell Communication , Tissue Engineering/methods , Alloys/chemistry , Bone Regeneration , Cell Transplantation , Coculture Techniques , Endothelial Cells/cytology , Humans , Osseointegration , Peptides/chemistry , Stem Cells/metabolism , Titanium/chemistry
10.
J Mater Sci Mater Med ; 15(7): 779-86, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15446238

ABSTRACT

Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with osteoprogenitor cells. With this aim, we have developed a novel strategy of biomimetic modification to enhance osseointegration of hydroxyapatite (HA) implants. RGD-containing peptides displaying different conformations (linear GRGDSPC and cyclo-DfKRG) were grafted onto HA surface by means of a three-step reaction procedure: silanisation with APTES, cross-linking with N-succinimidyl-3-maleimidopropionate and finally immobilisation of peptides thanks to thiol bonding. Whole process was performed in anhydrous conditions to ensure the reproducibility of the chemical functionalisation. The three-step reaction procedure was characterised by high resolution X-ray photoelectron spectroscopy. Efficiency of this biomimetic modification was finally demonstrated by measuring the adhesion of osteoprogenitor cells isolated from HBMSC onto HA surface.


Subject(s)
Cell Adhesion/physiology , Durapatite , Oligopeptides/pharmacology , Osteoblasts/physiology , Prostheses and Implants , Amino Acid Sequence , Bone Marrow Cells/cytology , Cell Adhesion/drug effects , Cells, Cultured , Ceramics , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis , Stromal Cells/cytology , Stromal Cells/physiology
11.
Biomaterials ; 25(19): 4837-46, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15120531

ABSTRACT

In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step reaction procedure: silanization with APTES, cross-linking with SMP and finally immobilization of peptides thanks to thiol bonding. The whole process was performed in anhydrous conditions to ensure homogeneous biomolecules layout as well as to guarantee a sufficient amount of biomolecules grafted onto surfaces. The efficiency of this new route for biomimetic modification of titanium surface was demonstrated by measuring the adhesion between 1 and 24 h of osteoprogenitor cells isolated from HBMSC. Benefits of the as-proposed method were related to the high concentration of peptides grafted onto the surface (around 20 pmol/mm(2)) as well as to the capacity of cyclo-DfKRG peptide to interact with integrin receptors. Moreover, High Resolution beta-imager (using [(35)S]-Cys) has exhibited the stability of peptides grafted onto the surface when treated in harsh conditions.


Subject(s)
Hematopoietic Stem Cells/physiology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Osteoblasts/physiology , Titanium/chemistry , Alloys , Biomimetic Materials/chemistry , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Extracellular Matrix Proteins/chemistry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Materials Testing , Molecular Conformation , Osteoblasts/cytology , Osteoblasts/drug effects , Prostheses and Implants , Surface Properties
12.
Med Biol Eng Comput ; 42(1): 137-41, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14977235

ABSTRACT

Parallel to the biofunctionalisation of existing materials, innovation in biomaterials engineering has led to the specific design of titanium alloys for medical applications. Studies of the biological behaviour of metallic elements have shown that the composition and structure of the material should be carefully tailored to minimise adverse body reactions and to enhance implant longevity, respectively. Consequently, interest has focused on a new family of titanium alloys: Ti-6Mo-3Fe-5Ta, Ti-4Mo-2Fe-5Ta and Ti-6Mo-3Fe-5Zr-5Hf alloys. The non-toxicity of the specially designed titanium alloys compared with osteoblastic cells has been ascertained using MTT and RN tests. In addition, phase transformations upon thermal processing have been investigated, with comparison with a well-defined beta titanium alloy. Optimum thermal processing windows (above 550 degrees C) have been designed to generate a stable and nanostructured alpha phase from the isothermal omega phase that precipitates in a low temperature range (150-350 degrees C). The generation of such nanostructured microstructures should provide a promising opportunity to investigate tissue-biomaterial interactions at the scale of biomolecules such as proteins.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Joint Prosthesis , Titanium/chemistry , Humans , Materials Testing
13.
J Biomed Mater Res ; 52(1): 119-27, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10906682

ABSTRACT

The development of ideal antithrombogenic polymers, a major problem in biomaterials sciences, is a primary objective in the fields of cardiovascular prostheses, artificial hearts, and other devices. To decrease their thrombogenicity, which remains the major obstacle, we have developed polymeric materials endowed with a specific affinity for antithrombin III (ATIII) and thus able, like heparin, to catalyze the inhibition of thrombin by ATIII. Sulfonate and sulfonamide groups are introduced onto phenyl rings belonging to styrene residues, which are radiation grafted (using swift heavy ion and gamma radiation) onto poly(vinylidene difluoride) (PVDF) and also onto poly(vinylidene fluoride/hexafluoropropylene) [P(VDF-HFP)]. In contrast to gamma radiation, which leads to a homogeneous modification, the advantage of swift heavy ion grafting is that only small regions are modified; thus, the surface may present hydrophilic (corresponding to the modified areas) and hydrophobic microdomains (corresponding to the unmodified areas) of different sizes, depending on the absorbed dose and grafting yield. Surface topography and composition are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sulfur, sodium, fluorine, and carbon are determined by scanning electron microscopy combined with energy-dispersive X-ray analysis (SEM-EDXA). The amount of fluorine decreases as polystyrene (PS) is grafted, whatever the kind of radiation and polymer. When the polymers are functionalized, the amount of fluorine also decreases while sodium and sulfur appear. Functionalization seems to increase the roughness of the surface, and its area.


Subject(s)
Biocompatible Materials , Heparin , Polymers , Gamma Rays , Heavy Ions
14.
J Biomed Mater Res ; 46(3): 368-75, 1999 Sep 05.
Article in English | MEDLINE | ID: mdl-10397994

ABSTRACT

The attachment of human umbilical vein endothelial cells (HUVECs) on substrates that had been covalently grafted with the cell adhesion peptides Arg-Gly-Asp (RGD) was investigated. This approach was used to provide substrates that are adhesive to cells even in the absence of serum proteins and to cells that have had no prior treatment of the surface with proteins that promote cell adhesion. We wanted to improve control of cellular interactions with cell-adhesive materials by providing fixedly bound adhesion ligands. Silica was examined as a model surface. The peptides were grafted using three different steps: grafting of aminosilane molecules; reaction with a maleimide molecule; and immobilization of cell-binding peptides containing the RGD sequence. The RGD-grafted surface was characterized by X-ray photoelectron spectroscopy (XPS) and contact-angle measurements.


Subject(s)
Cell Transplantation , Endothelium, Vascular/cytology , Oligopeptides , Silicon Dioxide/chemistry , Spectrometry, X-Ray Emission , Amino Acid Sequence , Cell Adhesion , Cells, Cultured , Cross-Linking Reagents , Humans , Maleimides/chemistry , Molecular Sequence Data , Surface Properties , Wettability
15.
Biomaterials ; 20(3): 241-51, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10030601

ABSTRACT

In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive molecules expressed by cells with regard to the inflammatory process. We studied intercellular adhesion molecule-1 (ICAM-1) expression and focused our work on the determination of ICAM-1 sites expressed per adherent cell lining the biomaterial, thus in situ, in comparison to control HUVEC on plastic wells: the results obtained by binding experiments were correlated to flow cytometry analyses and showed that the polyester does not induce a proinflammatory state and that HUVEC covering the structure are able to respond to a stimulus.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible , Endothelium, Vascular/metabolism , Intercellular Adhesion Molecule-1/biosynthesis , Polyesters , Antibodies, Monoclonal/metabolism , Binding Sites, Antibody , Binding, Competitive , Cell Adhesion , Cell Line , Endothelium, Vascular/ultrastructure , Flow Cytometry , Humans , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Radioimmunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...