Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
PeerJ Comput Sci ; 10: e2170, 2024.
Article in English | MEDLINE | ID: mdl-39314693

ABSTRACT

Schizophrenia is a severe mental disorder that impairs a person's mental, social, and emotional faculties gradually. Detection in the early stages with an accurate diagnosis is crucial to remedying the patients. This study proposed a new method to classify schizophrenia disease in the rest state based on neurologic signals achieved from the brain by electroencephalography (EEG). The datasets used consisted of 28 subjects, 14 for each group, which are schizophrenia and healthy control. The data was collected from the scalps with 19 EEG channels using a 250 Hz frequency. Due to the brain signal variation, we have decomposed the EEG signals into five sub-bands using a band-pass filter, ensuring the best signal clarity and eliminating artifacts. This work was performed with several scenarios: First, traditional techniques were applied. Secondly, augmented data (additive white Gaussian noise and stretched signals) were utilized. Additionally, we assessed Minimum Redundancy Maximum Relevance (MRMR) as the features reduction method. All these data scenarios are applied with three different window sizes (epochs): 1, 2, and 5 s, utilizing six algorithms to extract features: Fast Fourier Transform (FFT), Approximate Entropy (ApEn), Log Energy entropy (LogEn), Shannon Entropy (ShnEn), and kurtosis. The L2-normalization method was applied to the derived features, positively affecting the results. In terms of classification, we applied four algorithms: K-nearest neighbor (KNN), support vector machine (SVM), quadratic discriminant analysis (QDA), and ensemble classifier (EC). From all the scenarios, our evaluation showed that SVM had remarkable results in all evaluation metrics with LogEn features utilizing a 1-s window size, impacting the diagnosis of Schizophrenia disease. This indicates that an accurate diagnosis of schizophrenia can be achieved through the right features and classification model selection. Finally, we contrasted our results to recently published works using the same and a different dataset, where our method showed a notable improvement.

2.
Clin EEG Neurosci ; : 15500594231224014, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225169

ABSTRACT

The term visual working memory (VWM) refers to the temporary storage of visual information. In electrophysiological recordings during the change detection task which relates to VWM, contralateral negative slow activity was detected. It was found to occur during the information is kept in memory and it was called contralateral delay activity. In this study, the characteristics of electroencephalogram frequencies of the contralateral and ipsilateral responses in the retention phase of VWM were evaluated by using time-frequency analysis (discrete wavelet transform [DWT]) in the change detection task. Twenty-six volunteers participated in the study. Event-related brain potentials (ERPs) were examined, and then a time-frequency analysis was performed. A statistically significant difference between contralateral and ipsilateral responses was found in the ERP. DWT showed a statistically significant difference between contralateral and ipsilateral responses in the delta and theta frequency bands range. When volunteers were grouped as either high or low VWM capacity the time-frequency analysis between these groups revealed that high memory capacity groups have a significantly higher negative coefficient in alpha and beta frequency bands. This study showed that during the retention phase delta and theta bands may relate to visual memory retention and alpha and beta bands may reflect individual memory capacity.

3.
Appl Bionics Biomech ; 2021: 6472586, 2021.
Article in English | MEDLINE | ID: mdl-34603504

ABSTRACT

Although food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and 25% (mean age: 21.05 ± 2.5) participated in this study voluntarily. The participants were asked to focus on the food and nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been collected using a 16-channel amplifier with a sampling rate of 1024 Hz. The SensoMotoric Instruments (SMI) iView XTM RED eye tracking technology was used simultaneously with the EEG to measure the participants' attention to the presented stimuli. Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of P300 and LPP components to separate food and nonfood stimuli. We have implemented k-nearest neighbor (kNN), support vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT), and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-frequency space instead of applying more complex ones like connectivity metrics.

4.
Appl Bionics Biomech ; 2021: 6662074, 2021.
Article in English | MEDLINE | ID: mdl-33628331

ABSTRACT

The electroencephalography (EEG) signals have been used widely for studying the brain neural information dynamics and behaviors along with the developing impact of using the machine and deep learning techniques. This work proposes a system based on the fast Fourier transform (FFT) as a feature extraction method for the classification of human brain resting-state electroencephalography (EEG) recorded signals. In the proposed system, the FFT method is applied on the resting-state EEG recordings and the corresponding band powers were calculated. The extracted relative power features are supplied to the classification methods (classifiers) as an input for the classification purpose as a measure of human tiredness through predicting lactate enzyme level, high or low. To validate the suggested method, we used an EEG dataset which has been recorded from a group of elite-level athletes consisting of two classes: not tired, the EEG signals were recorded during the resting-state task before performing acute exercise and tired, the EEG signals were recorded in the resting-state after performing an acute exercise. The performance of three different classifiers was evaluated with two performance measures, accuracy and precision values. The accuracy was achieved above 98% by the K-nearest neighbor (KNN) classifier. The findings of this study indicated that the feature extraction scheme has the ability to classify the analyzed EEG signals accurately and predict the level of lactate enzyme high or low. Many studying fields, like the Internet of Things (IoT) and the brain computer interface (BCI), can utilize the findings of the proposed system in many crucial decision-making applications.

5.
Appl Bionics Biomech ; 2020: 8853238, 2020.
Article in English | MEDLINE | ID: mdl-33224269

ABSTRACT

An electroencephalogram (EEG) is a significant source of diagnosing brain issues. It is also a mediator between the external world and the brain, especially in the case of any mental illness; however, it has been widely used to monitor the dynamics of the brain in healthy subjects. This paper discusses the resting state of the brain with eyes open (EO) and eyes closed (EC) by using sixteen channels by the use of conventional frequency bands and entropy of the EEG signal. The Fast Fourier Transform (FFT) and sample entropy (SE) of each sensor are computed as methods of feature extraction. Six classifiers, including logistic regression (LR), K-Nearest Neighbors (KNN), linear discriminant (LD), decision tree (DT), support vector machine (SVM), and Gaussian Naive Bayes (GNB) are used to discriminate the resting states of the brain based on the extracted features. EEG data were epoched with one-second-length windows, and they were used to compute the features to classify EO and EC conditions. Results showed that the LR and SVM classifiers had the highest average classification accuracy (97%). Accuracies of LD, KNN, and DT were 95%, 93%, and 92%, respectively. GNB gained the least accuracy (86%) when conventional frequency bands were used. On the other hand, when SE was used, the average accuracies of SVM, LD, LR, GNB, KNN, and DT algorithms were 92% 90%, 89%, 89%, 86%, and 86%, respectively.

6.
Appl Bionics Biomech ; 2020: 8824625, 2020.
Article in English | MEDLINE | ID: mdl-33204304

ABSTRACT

Imbalanced class distribution in the medical dataset is a challenging task that hinders classifying disease correctly. It emerges when the number of healthy class instances being much larger than the disease class instances. To solve this problem, we proposed undersampling the healthy class instances to improve disease class classification. This model is named Hellinger Distance Undersampling (HDUS). It employs the Hellinger Distance to measure the resemblance between majority class instance and its neighbouring minority class instances to separate classes effectively and boost the discrimination power for each class. An extensive experiment has been conducted on four imbalanced medical datasets using three classifiers to compare HDUS with a baseline model and three state-of-the-art undersampling models. The outcomes display that HDUS can perform better than other models in terms of sensitivity, F1 measure, and balanced accuracy.

7.
Cogn Neurodyn ; 13(6): 503-512, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31741687

ABSTRACT

Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream.

8.
J Healthc Eng ; 2018: 8310975, 2018.
Article in English | MEDLINE | ID: mdl-30425820

ABSTRACT

The structural and functional neural differences between the elite karate athletes and control group have been investigated in the concept of this study. 13 elite karate athletes and age-gender matched 13 volunteers who have not performed regular exercises participated in the study. Magnetic resonance imaging was used to acquire the anatomical and functional maps. T1-weighted anatomical images were segmented to form gray and white matter images. Voxel-based morphometry is used to elucidate the differences between the groups. Moreover, resting state functional measurements had been done, and group independent component analysis was implemented in order to exhibit the resting state networks. Then, second-level general linear models were used to compute the statistical maps. It has been revealed that increased GM volume values of inferior/superior temporal, occipital, premotor cortex, and temporal pole superior were present for the elite athletes. Additionally, WM values were found to be increased in caudate nucleus, hypothalamus, and mammilary region for the elite karate players. Similarly, for the elite karate players, the brain regions involved in the movement planning and visual perception are found to have higher connectivity values. The differences in these findings can be thought to be originated from the advances gained through the several years of training which is required to be an elite karate athlete.


Subject(s)
Athletes , Brain Mapping , Brain/diagnostic imaging , Magnetic Resonance Imaging , Martial Arts , Neuronal Plasticity , Adult , Case-Control Studies , Exercise , Female , Gray Matter/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Software , Visual Perception , White Matter/diagnostic imaging , Young Adult
9.
Cogn Neurodyn ; 12(4): 357-363, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30137872

ABSTRACT

Time perception is defined as a subjective judgment on the elapsed time of an event. It can change according to both external and internal factors. There are two main paradigms of time perception; retrospective time perception (RTP) and prospective time perception (PTP). Two paradigms differ from each other according to whether the subject has knowledge on the importance of passage of time in the given task. Since RTP paradigm studies are harder to conduct, studies on RTP paradigm is far fewer than studies on PTP. Thus in the current study, both RTP and PTP paradigms are investigated. Also, time perception is discussed in relation to internal clock model and cognitive load. Emotional motion videos are used to create cognitive load and manipulate internal clock. Results showed the effect of emotion on time perception. Another major finding is that shorter videos are perceived longer whereas longer videos are perceived shorter as in accordance with Vierordt's Law. However, there was no difference between RTP and PTP paradigms. These results indicate that emotional videos change our internal clock while a number of changes in a motion video create cognitive load causing disturbance of time perception.

11.
Cogn Neurodyn ; 12(1): 95-102, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29435090

ABSTRACT

Neural efficiency is proposed as one of the neural mechanisms underlying elite athletic performances. Previous sports studies examined neural efficiency using tasks that involve motor functions. In this study we investigate the extent of neural efficiency beyond motor tasks by using a mental subtraction task. A group of elite karate athletes are compared to a matched group of non-athletes. Electroencephalogram is used to measure cognitive dynamics during resting and increased mental workload periods. Mainly posterior alpha band power of the karate players was found to be higher than control subjects under both tasks. Moreover, event related synchronization/desynchronization has been computed to investigate the neural efficiency hypothesis among subjects. Finally, this study is the first study to examine neural efficiency related to a cognitive task, not a motor task, in elite karate players using ERD/ERS analysis. The results suggest that the effect of neural efficiency in the brain is global rather than local and thus might be contributing to the elite athletic performances. Also the results are in line with the neural efficiency hypothesis tested for motor performance studies.

12.
Brain Imaging Behav ; 10(2): 424-36, 2016 06.
Article in English | MEDLINE | ID: mdl-25957181

ABSTRACT

Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p < 0.05). Furthermore the correlation of quantitative EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p < 0.05). However, in the regression analysis of FA values and the theta band activity of EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further, the neurophysiological tests including Benton Face Recognition (BFR), Digit Span test (DST), Warrington Topographic Memory test (WTMT), California Verbal Learning test (CVLT) has been regressed with the FA skeleton maps for both subject groups. Our results corresponding to DST task were found to be similar with previously reported findings for working memory and episodic memory tasks. For the WTMT, FA values of the cingulum (right) that plays a role in memory process was found to be related with the behavioral responses. Splenium of corpus callosum was found to be correlated for both subject groups for the BFR.


Subject(s)
Functional Neuroimaging/methods , Stroke/physiopathology , Adult , Aged , Brain/anatomy & histology , Brain Mapping/methods , Case-Control Studies , Diffusion Tensor Imaging/methods , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Principal Component Analysis , Thalamus/anatomy & histology , Thalamus/physiopathology , White Matter/physiopathology
13.
Theor Biol Med Model ; 11 Suppl 1: S4, 2014 May 07.
Article in English | MEDLINE | ID: mdl-25080176

ABSTRACT

BACKGROUND: Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. METHODS: Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. RESULTS: Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. CONCLUSIONS: This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability.


Subject(s)
Eye Movements , Surgery, Computer-Assisted/instrumentation , User-Computer Interface , Awareness , Equipment Design , Female , Fixation, Ocular , Humans , Male , Task Performance and Analysis , Time Factors
14.
Article in English | MEDLINE | ID: mdl-18002723

ABSTRACT

Neuroimaging is an essential tool for the diagnosis of cognitive brain disorders along with the EEG measurements. EEG and fMRI are the two crucial modalities which reflect the functional activity inside the brain. EEG is easy to apply and provides high temporal resolution but has poor spatial resolution. Contrarily, fMRI has a higher spatial resolution while having a poor temporal resolution. In this study, multi modal data sets obtained from Event Related fMRI and EEG measurements are analyzed using SPM and LORETA based dipole source reconstruction techniques, respectively. It has been demonstrated that the generator of N170 component of ERP which is located at superior temporal region is in agreement with the SPM results of fMRI. The results imply that the joint use of fMRI and ERP data helps identifying the physiological and hemodynamic correlates of face recognition by estimating the underlying functional activity in a fine temporal and spatial resolution.


Subject(s)
Brain Mapping/methods , Brain/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Algorithms , Computer Simulation , Humans , Reproducibility of Results , Sensitivity and Specificity
15.
Article in English | MEDLINE | ID: mdl-18003189

ABSTRACT

Functional neuroimaging studies can be performed by combining the modalities of fMRI and Electroencephalography because of their complementary properties. The main advantage of EEG imaging among other modalities is the high temporal resolution while fMRI has high spatial resolution. So, usage of these procedures is going to help us to gain more information about the functional organization of the brain. In this study, changes in the relationship between Steady State Visual Evoked Potentials (SSVEP) generators and BOLD responses during visual stimulation have been systematically studied with 5 stimulus presentation rates (2, 4, 6, 8, 10) between 2-10 Hz. fMRI Analysis was carried out using Statistical Parametric Mapping (SPM). The result of fMRI analysis is used as a localization mask for SSVEP localization process. SSVEP generators are localized using Low Resolution Electro Magnetic Tomography (LORETA) which is implemented on a realistic head model. Then, for each stimulus frequency voxel by voxel correlation values of the active regions are computed.


Subject(s)
Brain Mapping/methods , Evoked Potentials, Visual/physiology , Magnetic Resonance Imaging/methods , Models, Neurological , Pattern Recognition, Automated/methods , Tomography/methods , Visual Cortex/physiology , Algorithms , Artificial Intelligence , Computer Simulation , Data Interpretation, Statistical , Head/physiology , Humans
16.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 4832-4, 2006.
Article in English | MEDLINE | ID: mdl-17946655

ABSTRACT

Localization of the cognitive activity in the brain is one of the major problems in neuroscience. Current techniques for neuro-imaging are based on functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET), and Event Related Potential (ERP) recordings. The highest temporal resolution is achieved by ERP, which is crucial for temporal localization of activities. However, the spatial resolution of scalp topography for ERP is low. There is a severe limitation for the parametric inverse solution algorithms that they can only perform well for the temporally uncorrelated sources. In this study, a spatial decomposition method is proposed to separate the temporally correlated sources using their topographies prior to their localization.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Evoked Potentials , Algorithms , Brain/pathology , Computers , Electrodes , Electroencephalography/methods , Equipment Design , Head/pathology , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Software , Time Factors , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL