Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499047

ABSTRACT

Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial−mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p < 0.05) and decreases the mesenchymal, inflammatory markers (p < 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p < 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1ß, IL-6 and TNF-α (p < 0.05) and enhancing the epigenetic marker HDAC2 (p < 0.05) and antioxidant marker Nrf2 (p < 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling.


Subject(s)
Epithelial-Mesenchymal Transition , Piperidines , Pneumonia , Smoke , Animals , Mice , Antioxidants/pharmacology , Lung/pathology , Mice, Inbred BALB C , NF-E2-Related Factor 2/genetics , Oxidative Stress , Pneumonia/drug therapy , Pneumonia/pathology , Sirtuin 1/genetics , Nicotiana/adverse effects , Smoke/adverse effects , Piperidines/pharmacology
2.
Eur J Pharmacol ; 915: 174467, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34478690

ABSTRACT

Airflow limitation in chronic obstructive pulmonary disease (COPD) is the result of exaggerated airway fibrosis and obliteration of the small airways due to persistent inflammation, and an impaired anti-oxidant response. EMT has been implicated as an active signalling process in cigarette smoke (CS)-induced lung pathology, and macrolide Azithromycin (AZT) use has gained interest in treating COPD. Here, we tested effectiveness of intra-nasal AZT alone and in combination with dexamethasone (DEX) on CS-induced acute lung inflammation. Human alveolar epithelial cells (A549) were treated with CS extract (CSE) for 48 h, and male Balb/c mice were exposed to CS (3 cigarettes-3 times/day) for 4 days. The effects of AZT alone (0.25 and 1.25 µM, in vitro; 0.5 and 5 mg/kg, in vivo) or in combination with DEX (1 µM, in vitro; 1 mg/kg, in vivo) on CS-induced cellular cytotoxicity, oxidative stress, inflammation, and lung function were assessed. AZT alone and in combination with DEX significantly inhibited the CS (E)-induced expression of mesenchymal protein markers and the regulatory protein ß-catenin. Furthermore, AZT by itself or in combination with DEX significantly suppressed CS-induced expression of the proinflammtory cytokines TNFα, IL1ß and IL6 and prevented pNFkB. Mechanistically, AZT restored the CS-induced reduction in anti-oxidant transcription factor NRF2 and upregulated HDAC2 levels, thereby repressing inflammatory gene expression. Beneficial effects of AZT functionally translated in improved lung mechanics in vivo. Further preclinical and clinical studies are warranted to fully establish and validate the therapeutic efficacy of AZT as a mono- or combination therapy for the treatment of COPD.


Subject(s)
Azithromycin
SELECTION OF CITATIONS
SEARCH DETAIL
...