Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 345, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684952

ABSTRACT

BACKGROUND: During the pandemic, the interest in colorful wild small fruits increased due to their positive effects on health. Also it has become very important to offer species with high nutritional value as fresh or processed products for human consumption due to increasing world population and decreasing arable land. In this context, we characterized the horticultural characteristics of 11 rosehip genotypes grown from seeds. RESULTS: Citric acid was determined as the main organic acid in all the genotypes investigated. The mean values of the organic acids obtained from all the genotypes were found to be as follows: citric acid (7177 mg L-1), malic acid (3669 mg L-1), tartaric acid (1834 mg L-1), oxalic acid (1258 mg L-1), carboxylic acid (631.9 mg L-1), shikimic acid (157.8 mg L-1), ascorbic acid (155 mg L-1), and acetic acid (20.9 mg L-1). Ellagic acid was the dominant phenolic compound (90.1 mg L-1 - 96.2 mg L-1) in all genotypes. The average values obtained from all genotypes for total phenolics, total flavonoids, and antioxidant activity were 37 261 mg GAE L-1, 526.2 mg quercetin L-1, and 93.6%, respectively. These characteristics had the lowest coefficients of variation, which indicated that all genotypes were similar regarding high biochemical with antioxidant effect. In addition, fruit width, fruit length, and fruit weight varied between 13.0 and 17.3 mm, 20.7 and 25.5 mm, and 1.4 and 2.7 g, respectively. CONCLUSIONS: The genotypes were categorized according to different purposes, such as suitability for wine production, making vinegar, etc. While the pomological characteristics were strongly positively correlated among themselves, they were generally found to be negatively correlated with the phytochemical characteristics. Categorizing genotypes according to different usage purposes can improve the agricultural and industrial application of rosehip and enhance their breeding efficacy.


Subject(s)
Genotype , Rosa , Rosa/genetics , Antioxidants/metabolism , Fruit/genetics , Fruit/growth & development , Phenols , Horticulture , Flavonoids
2.
ACS Omega ; 8(39): 35452-35469, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810640

ABSTRACT

Pomegranate peel, derived from the processing of Punica granatum L. (pomegranate), has traditionally been considered agricultural waste. However, recent studies have revealed its potential as a rich source of bioactive compounds with diverse pharmacological effects. Pomegranate peel is a rich reservoir of antioxidants, polyphenols, dietary fiber, and vitamins, which contribute to its remarkable bioactivity. Studies have demonstrated the anti-inflammatory, cardioprotective, wound healing, anticancer, and antimicrobial properties of pomegranate peel owing to the presence of phytochemicals, such as gallic acid, ellagic acid, and punicalagin. The extraction of bioactive compounds from pomegranate peel requires a careful selection of techniques to maximize the yield and quality. Green extraction methods, including pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE), offer efficient and sustainable alternatives to traditional methods. Furthermore, pomegranate peel has been utilized in the food industry, where it can significantly enhance the nutritional value, organoleptic characteristics, and shelf life of food products. Pomegranate peel has the potential to be used to develop innovative functional foods, nutraceuticals, and other value-added products, providing new opportunities for the pharmaceutical, cosmetic, and food industries.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 111-117, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37715410

ABSTRACT

γ-tocophérol methyltransferase (GTMT), a key enzyme in the tocopherols biosynthesis pathway, is involved in the conversion of δ- and l'γ-tocophérol to ß- et l'α-tocophérol, respectively. In fact, it plays an important role in the α-tocopherol composition and the quality of olive oil. A total of 14 olive tree cultivars (Olea Europaea L.) were chosen and used in this study. They were sampled from different regions of Tunisia. Four cultivars from four Mediterranean regions (Greece, Algeria, Morocco, and Spain) were included for comparison. For each variety, DNA was extracted from young leaves. The Vte4 gene was PCR amplified from the 14 olive varieties and verified by electrophoresis on a 2% agarose gel for each variety. DNA sequencing of the olive cultivars revealed several single-nucleotide polymorphisms (SNPs). Statistical and bioinformatics analysis  draw attention to some associations between some of the SNPs, tocopherols contents and oleic acid content. In fact, two significant associations are obtained between SUBS24 and both Total-Tocopherols and Beta-Tocopherol. Moreover, dendrograms reveals that there is a correlation between genetic variability and chemical characteristics which make the Vte4 gene more interesting in terms of tocopherols levels.


Subject(s)
Olea , Polymorphism, Single Nucleotide , Olive Oil , Polymorphism, Single Nucleotide/genetics , alpha-Tocopherol , Tocopherols , Olea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...