Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Development ; 146(4)2019 02 18.
Article in English | MEDLINE | ID: mdl-30745429

ABSTRACT

In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.


Subject(s)
Nerve Tissue Proteins/physiology , Vision, Ocular , Visual Pathways/physiology , Animals , Axon Guidance , Axons/metabolism , Geniculate Bodies/physiology , Genotype , Mice , Mice, Transgenic , Mutation , Retina/physiology , Retinal Ganglion Cells/physiology , Time Factors
2.
Nat Commun ; 9(1): 2347, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29904064

ABSTRACT

The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.


Subject(s)
Fishes/parasitology , Membrane Microdomains/chemistry , Protein Transport , Saprolegnia/physiology , Amino Acid Motifs , Animals , Cloning, Molecular , Cytosol/metabolism , Host-Pathogen Interactions , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Biological , Plants/metabolism , Protein Domains , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry
3.
Mol Biol Cell ; 25(2): 234-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24258025

ABSTRACT

For correct functioning of the nervous system, the appropriate number and complement of neuronal cell types must be produced during development. However, the molecular mechanisms that regulate the production of individual classes of neurons are poorly understood. In this study, we investigate the function of the thrombospondin-1-like glycoprotein, Nel (neural epidermal growth factor [EGF]-like), in the generation of retinal ganglion cells (RGCs) in chicks. During eye development, Nel is strongly expressed in the presumptive retinal pigment epithelium and RGCs. Nel overexpression in the developing retina by in ovo electroporation increases the number of RGCs, whereas the number of displaced amacrine cells decreases. Conversely, knockdown of Nel expression by transposon-mediated introduction of RNA interference constructs results in decrease in RGC number and increase in the number of displaced amacrine cells. Modifications of Nel expression levels do not appear to affect proliferation of retinal progenitor cells, but they significantly alter the progression rate of RGC differentiation from the central retina to the periphery. Furthermore, Nel protects RGCs from apoptosis during retinal development. These results indicate that Nel positively regulates RGC production by promoting their differentiation and survival during development.


Subject(s)
Avian Proteins/genetics , Cell Differentiation/genetics , Glycoproteins/genetics , Retina/growth & development , Thrombospondins/metabolism , Animals , Apoptosis/genetics , Cell Survival/genetics , Chickens , Gene Expression Regulation, Developmental , Retina/metabolism , Retinal Ganglion Cells , Stem Cells/cytology , Stem Cells/metabolism , Thrombospondins/genetics
4.
Proc Natl Acad Sci U S A ; 109(6): 2096-101, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22308362

ABSTRACT

The eukaryotic oomycetes, or water molds, contain several species that are devastating pathogens of plants and animals. During infection, oomycetes translocate effector proteins into host cells, where they interfere with host-defense responses. For several oomycete effectors (i.e., the RxLR-effectors) it has been shown that their N-terminal polypeptides are important for the delivery into the host. Here we demonstrate that the putative RxLR-like effector, host-targeting protein 1 (SpHtp1), from the fish pathogen Saprolegnia parasitica translocates specifically inside host cells. We further demonstrate that cell-surface binding and uptake of this effector protein is mediated by an interaction with tyrosine-O-sulfate-modified cell-surface molecules and not via phospholipids, as has been reported for RxLR-effectors from plant pathogenic oomycetes. These results reveal an effector translocation route based on tyrosine-O-sulfate binding, which could be highly relevant for a wide range of host-microbe interactions.


Subject(s)
Fishes/microbiology , Proteins/metabolism , Saprolegnia/metabolism , Tyrosine/analogs & derivatives , Animals , Cell Membrane/metabolism , Protein Binding , Protein Sorting Signals , Protein Transport , Proteins/chemistry , Tyrosine/metabolism
5.
J Biol Chem ; 287(5): 3282-91, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22157752

ABSTRACT

Nel (neural epidermal growth factor (EGF)-like molecule) is a multimeric, multimodular extracellular glycoprotein with heparin-binding activity and structural similarities to thrombospondin-1. Nel is predominantly expressed in the nervous system and has been implicated in neuronal proliferation and differentiation, retinal axon guidance, synaptic functions, and spatial learning. The Nel protein contains an N-terminal thrombospondin-1 (TSP-N) domain, five cysteine-rich domains, and six EGF-like domains. However, little is known about the functions of specific domains of the Nel protein. In this study, we have performed structure-function analysis of Nel, by using a series of expression constructs for different regions of the Nel protein. Our studies demonstrate that the TSP-N domain is responsible for homo-multimer formation of Nel and its heparin-binding activity. In vivo, Nel and related Nell1 are expressed in several regions of the mouse central nervous system with partly overlapping patterns. When they are expressed in the same cells in vitro, Nel and Nell1 can form hetero-multimers through the TSP-N domain, but they do not hetero-oligomerize with thrombospondin-1. Whereas both the TSP-N domain and cysteine-rich domains can bind to retinal axons in vivo, only the latter causes growth cone collapse in cultured retinal axons, suggesting that cysteine-rich domains interact with and activate an inhibitory axon guidance receptor. These results suggest that Nel interacts with a range of molecules through its different domains and exerts distinct functions.


Subject(s)
Central Nervous System/embryology , Gene Expression Regulation, Developmental/physiology , Growth Cones/metabolism , Nerve Tissue Proteins/biosynthesis , Protein Multimerization/physiology , Thrombospondin 1 , Animals , Chick Embryo , HEK293 Cells , Humans , Mice , Nerve Tissue Proteins/genetics , Protein Structure, Tertiary
6.
Comp Hepatol ; 8: 1, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19432992

ABSTRACT

BACKGROUND: Pregnane X receptor (PXR) agonists inhibit liver fibrosis. However, the rodent PXR activator pregnenolone 16alpha carbonitrile (PCN) blocks, in vitro, hepatic stellate cell-to-myofibroblast trans-differentiation and proliferation in cells from mice with a disrupted PXR gene, suggesting there is an additional anti-fibrogenic drug target for PCN. The role of the low affinity glucocorticoid binding site (LAGS) - which may be identical or associated with the progesterone receptor membrane component 1 (PGRMC1) - in mediating this anti-fibrogenic effect has been examined, since binding of dexamethasone to the LAGS in liver microsomal membranes has previously been shown to be inhibited by PCN. RESULTS: Quiescent rat and human hepatic stellate cells (HSC) were isolated from livers and cultured to generate liver myofibroblasts. HSC and myofibroblasts expressed PGRMC1 as determined by RT-PCR and Western blotting. Quiescent rat HSC also expressed the truncated HC5 variant of rPGRMC1. Rat PGRMC1 was cloned and expression in COS-7 cells gave rise to specific binding of radiolabelled dexamethasone in cell extracts that was inhibited by PCN, suggesting that PGRMC1 may be identical to LAGS or activates LAGS binding activity. Liver microsomes were used to screen a range of structurally related compounds for their ability to inhibit radiolabelled dexamethasone binding to rat LAGS. These compounds were also screened for their ability to activate rat and human PXR and to inhibit rat HSC-to-myofibroblast trans-differentiation/proliferation. A compound (4 androstene-3-one 17beta-carboxylic acid methyl ester) was identified which bound rat LAGS with high affinity and inhibited both rat and human HSC trans-differentiation/proliferation to fibrogenic myofibroblasts without showing evidence of rat or human PXR agonism. However, despite potent anti-fibrogenic effects in vitro, this compound did not modulate liver fibrosis severity in a rat model of liver fibrosis. Immunohistochemical analysis showed that rat liver myofibroblasts in vivo did not express rPGRMC1. CONCLUSION: LAGS ligands inhibit HSC trans-differentiation and proliferation in vitro but show little efficacy in inhibiting liver fibrosis, in vivo. The reason(s) for this disparity is/are likely associated with an altered myofibroblast phenotype, in vitro, with expression of rPGMRC1 in vitro but not in vivo. These data emphasize the limitations of in vitro-derived myofibroblasts for predicting their activity in vivo, in studies of fibrogenesis. The data also demonstrate that the anti-fibrogenic effects of PCN in vivo are likely mediated entirely via the PXR.

7.
J Hepatol ; 49(1): 88-98, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18394744

ABSTRACT

BACKGROUND/AIMS: Myofibroblast apoptosis promotes the resolution of liver fibrosis. However, retaining macrophages may enhance reversal. The effects of specifically stimulating myofibroblast apoptosis in vivo were assessed. METHODS: A single chain antibody (C1-3) to an extracellular domain of a myofibroblast membrane protein was injected as a fluorescent- or gliotoxin conjugate into mice with liver fibrosis. RESULTS: C1-3 specifically targeted alpha-smooth muscle actin positive liver myofibroblasts within scar regions of the liver in vivo and did not co-localise with liver monocytes/macrophages. Injection of free gliotoxin stimulated a 2-fold increase in non-parenchymal cell apoptosis and depleted liver myofibroblasts by 30% and monocytes/macrophages by 50% but had no effect on fibrosis severity in the sustained injury model employed. In contrast, C1-3-targeted gliotoxin stimulated a 5-fold increase in non-parenchymal cell apoptosis, depleted liver myofibroblasts by 60%, did not affect the number of monocytes/macrophages and significantly reduced fibrosis severity. Fibrosis reduction was associated with increased metalloproteinase-13 levels. CONCLUSIONS: These data demonstrate that specific targeting of liver myofibroblast apoptosis is the most effective anti-fibrogenic therapy, supporting a role for liver monocytes and/or macrophages in the promotion of liver fibrosis reduction.


Subject(s)
Antibodies, Monoclonal/pharmacology , Apoptosis/immunology , Fibroblasts/immunology , Fibroblasts/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Actins/immunology , Animals , Antibody Specificity , Carbon Tetrachloride/toxicity , Epitopes , Gliotoxin/pharmacology , Immunotherapy/methods , Liver Cirrhosis/chemically induced , Macrophages/immunology , Male , Membrane Proteins/immunology , Mice , Monocytes/immunology , Synaptophysin/immunology
8.
Gastroenterology ; 131(1): 194-209, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16831602

ABSTRACT

BACKGROUND & AIMS: The activated pregnane X receptor is antifibrogenic in rodent chronic liver injury in vivo models. The aim of this study was to determine the effects of human pregnane X receptor activators on human hepatic stellate cell transdifferentiation to a profibrogenic phenotype in vitro. METHODS: Hepatic stellate cells were isolated from resected human liver and cultured under conditions in which they trans-differentiate into profibrogenic myofibroblasts. RESULTS: The pregnane X receptor was expressed in primary cultures at the level of messenger RNA and protein and was activated by the ligand rifampicin as judged by increases in binding of proteins to the pregnane X receptor ER6 DNA response element and by increases in ER6-dependent reporter gene expression. Short-term treatment of hepatic stellate cells with rifampicin inhibited the expression of selected fibrosis-related genes (transforming growth factor beta1, alpha-smooth muscle actin), proliferation-related genes, and WNT signaling-associated genes. There was also an increase in interleukin-6 secretion and an inhibition in DNA synthesis. Long-term treatment with rifampicin over several weeks reduced the proliferation and transdifferentiation of hepatic stellate cells. Small interfering RNA knockdown of the pregnane X receptor in a hepatic stellate cell line reduced the binding of proteins to the ER6 DNA response element and abrogated pregnane X receptor activator-dependent changes in transforming growth factor beta1 expression, interleukin-6 secretion, and proliferation. CONCLUSIONS: The pregnane X receptor is transcriptionally functional in human hepatic stellate cells and activators inhibit transdifferentiation and proliferation. The pregnane X receptor may therefore be an effective target for antifibrotic therapy.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Differentiation/drug effects , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , RNA, Neoplasm/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Rifampin/pharmacology , Blotting, Western , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Enzyme Inhibitors/therapeutic use , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , In Vitro Techniques , Liver Neoplasms/drug therapy , Pregnane X Receptor , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Steroid/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
9.
J Endocrinol ; 186(2): 353-65, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16079261

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted from the enteroendocrine L-cells of the gut and which acts primarily to potentiate the effects of glucose on insulin secretion from pancreatic beta-cells. It also stimulates insulin gene expression, proinsulin biosynthesis and affects the growth and differentiation of the islets of Langerhans. Previous studies on the mechanisms whereby GLP-1 regulates insulin gene transcription have focused on the rat insulin promoter. The aim of this study was to determine whether the human insulin promoter was also responsive to GLP-1, and if so to investigate the possible role of cAMP-responsive elements (CREs) that lie upstream (CRE1 and CRE2) and downstream (CRE3 and CRE4) of the transcription start site. INS-1 pancreatic beta-cells were transfected with promoter constructs containing fragments of the insulin gene promoter placed upstream of the firefly luciferase reporter gene. GLP-1 was found to stimulate the human insulin promoter, albeit to a lesser degree than the rat insulin promoter. Mutagenesis of CRE2, CRE3 and CRE4 blocked the stimulatory effect of GLP-1 while mutagenesis of CRE1 had no effect. Analysis of nuclear protein binding to the four CREs showed that, while they share some proteins, each CRE site is unique. Stimulation of transcription by GLP-1 through CRE2, CRE3 and CRE4 resulted in altered protein binding that was different for each of the CRE sites involved. Collectively, these data show that the four human CREs are not simply multiple copies of the rat CRE site and further emphasise that the human insulin promoter is distinct from the rodent promoter.


Subject(s)
Cyclic AMP/genetics , Gene Expression Regulation , Glucagon/pharmacology , Insulin/genetics , Peptide Fragments/pharmacology , Promoter Regions, Genetic , Protein Precursors/pharmacology , Response Elements , Animals , Cell Line, Tumor , Cyclic AMP/metabolism , Electrophoretic Mobility Shift Assay , Gene Expression , Glucagon/metabolism , Glucagon-Like Peptide 1 , Humans , Insulinoma , Peptide Fragments/metabolism , Protein Precursors/metabolism , Rats , Transcription Initiation Site , Transfection/methods
10.
Biochem J ; 389(Pt 3): 813-20, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15862113

ABSTRACT

The insulin promoter binds a number of tissue-specific and ubiquitous transcription factors. Of these, the homoeodomain protein PDX-1 (pancreatic duodenal homeobox factor-1), the basic leucine zipper protein MafA and the basic helix-loop-helix heterodimer E47/BETA2 (beta-cell E box transactivator 2; referred to here as beta2) bind to important regulatory sites. Previous studies have shown that PDX-1 can interact synergistically with E47 and beta2 to activate the rat insulin 1 promoter. The aim of the present study was to determine the relative contribution of PDX-1, MafA and E47/beta2 in regulating the human insulin promoter, and whether these factors could interact synergistically in the context of the human promoter. Mutagenesis of the PDX-1, MafA and E47/beta2 binding sites reduced promoter activity by 60, 74 and 94% respectively, in INS-1 beta-cells. In the islet glucagonoma cell line alphaTC1.6, overexpression of PDX-1 and MafA separately increased promoter activity approx. 2.5-3-fold, and in combination approx. 6-fold, indicating that their overall effect was additive. Overexpression of E47 and beta2 had no effect. In HeLa cells, PDX-1 stimulated the basal promoter by approx. 40-fold, whereas MafA, E47 and beta2 each increased activity by less than 2-fold. There was no indication of any synergistic effects on the human insulin promoter. On the other hand, the rat insulin 1 promoter and a mutated version of the human insulin promoter, in which the relevant regulatory elements were separated by the same distances as in the rat insulin 1 promoter, did exhibit synergy. PDX-1 was shown further to activate the endogenous insulin 1 gene in alphaTC1.6 cells, whereas MafA activated the insulin 2 gene. In combination, PDX-1 and MafA activated both insulin genes. Chromatin immunoprecipitation assays confirmed that PDX-1 increased the association of acetylated histones H3 and H4 with the insulin 1 gene and MafA increased the association of acetylated histone H3 with the insulin 2 gene.


Subject(s)
DNA-Binding Proteins/physiology , HMGB Proteins/physiology , Homeodomain Proteins/physiology , Insulin/biosynthesis , Promoter Regions, Genetic/physiology , Trans-Activators/physiology , Transcription Factors/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Line, Tumor , Gene Expression Regulation , Humans , Insulin/genetics , Maf Transcription Factors, Large , TCF Transcription Factors , Transcription Factor 7-Like 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL