Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1341, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351056

ABSTRACT

The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.


Subject(s)
Drosophila Proteins , Microbiota , Animals , Drosophila , Taste Perception/physiology , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Larva/physiology , Taste/physiology
2.
Genome Biol Evol ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37506263

ABSTRACT

The spotted flycatcher (Muscicapa striata) forms with the Mediterranean flycatcher (Muscicapa tyrrhenica) a newly recognized species pair of trans-Saharan migratory passerines. These flycatchers present a nested peripatric distribution, a pattern especially unusual among high dispersal species that questions the eco-evolutionary factors involved during the speciation process. Here, we present a genome assembly for M. striata assembled using a combination of Nanopore and Illumina sequences. The final assembly is 1.08 Gb long and consists of 4,779 contigs with an N50 of 3.2 Mb. The completeness of our M. striata genome assembly is supported by the number of BUSCO (95%) and ultraconserved element (UCE) (4889/5041; 97.0%) loci retrieved. This assembly showed high synteny with the Ficedula albicollis reference genome, the closest species for which a chromosome-scale reference genome is available. Several inversions were identified and will need to be investigated at the family level.


Subject(s)
Passeriformes , Songbirds , Animals , Phylogeny , Genome , Passeriformes/genetics , Songbirds/genetics , Synteny , Chromosomes
3.
Elife ; 122023 Jun 09.
Article in English | MEDLINE | ID: mdl-37294006

ABSTRACT

Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically defined diets, we found that association with Lp improves the growth of larvae-fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialogue that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the general control nonderepressible 2 (GCN2) kinase in Drosophila's enterocytes. Our data indicate that Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialogue between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.


Subject(s)
Drosophila Proteins , Symbiosis , Animals , Drosophila , Cues , RNA, Transfer , Amino Acids , Larva/genetics , Operon , Protein Kinases , Drosophila Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...