Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 118(5): 491-502, 2017 May.
Article in English | MEDLINE | ID: mdl-28121310

ABSTRACT

Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers' local taxonomy was not a good proxy for population's genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed.


Subject(s)
Genetic Variation , Genetics, Population , Pennisetum/genetics , Africa , DNA, Plant/genetics , Ethnicity , Farmers , Gene Flow , Genotype , Humans , Lakes , Linguistics , Microsatellite Repeats
2.
Mol Ecol ; 24(7): 1387-402, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25705965

ABSTRACT

Pearl millet (Pennisetum glaucum) is a staple crop in Sahelian Africa. Farmers usually grow varieties with different cycle lengths and complementary functions in Sahelian agrosystems. Both the level of genetic differentiation of these varieties and the domestication history of pearl millet have been poorly studied. We investigated the neutral genetic diversity and population genetic structure of early- and late-flowering domesticated and wild pearl millet populations using 18 microsatellite loci and 8 nucleotide sequences. Strikingly, early- and late-flowering domesticated varieties were not differentiated over their whole distribution area, despite a clear difference in their isolation-by-distance pattern. Conversely, our data brought evidence for two well-differentiated genetic pools in wild pearl millet, allowing us to test scenarios with different numbers and origins of domestication using approximate Bayesian computation (ABC). The ABC analysis showed the likely existence of asymmetric migration between wild and domesticated populations. The model choice procedure indicated that a single domestication from the eastern wild populations was the more likely scenario to explain the polymorphism patterns observed in cultivated pearl millet.


Subject(s)
Evolution, Molecular , Flowers/growth & development , Genetic Variation , Genetics, Population , Pennisetum/genetics , Computer Simulation , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , DNA, Plant/genetics , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Pennisetum/growth & development , Sequence Tagged Sites
3.
Mol Ecol ; 22(2): 327-40, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23205613

ABSTRACT

Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi-arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte-Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted-repeat transposable element (MITE) of the Tuareg family was inserted in the 3' untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.


Subject(s)
DNA Transposable Elements , Inverted Repeat Sequences , Pennisetum/genetics , Polymorphism, Genetic , Africa , Crops, Agricultural/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant , Microsatellite Repeats , Selection, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...