Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220063, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802777

ABSTRACT

Changes in behaviour over the lifetime of single-cell organisms have primarily been investigated in response to environmental stressors. However, growing evidence suggests that unicellular organisms undergo behavioural changes throughout their lifetime independently of the external environment. Here we studied how behavioural performances across different tasks vary with age in the acellular slime mould Physarum polycephalum. We tested slime moulds aged from 1 week to 100 weeks. First, we showed that migration speed decreases with age in favourable and adverse environments. Second, we showed that decision making and learning abilities do not deteriorate with age. Third, we revealed that old slime moulds can recover temporarily their behavioural performances if they go throughout a dormant stage or if they fuse with a young congener. Last, we observed the response of slime mould facing a choice between cues released by clone mates of different age. We found that both old and young slime moulds are attracted preferentially toward cues left by young slime moulds. Although many studies have studied behaviour in unicellular organisms, few have taken the step of looking for changes in behaviour over the lifetime of individuals. This study extends our knowledge of the behavioural plasticity of single-celled organisms and establishes slime moulds as a promising model to investigate the effect of ageing on behaviour at the cellular level. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Physarum polycephalum , Humans , Infant, Newborn , Physarum polycephalum/physiology , Learning , Cues
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1802): 20190470, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32420856

ABSTRACT

Unicellular organisms live in unpredictable environments. Therefore, they need to continuously assess environmental conditions and respond appropriately to survive and thrive. When subjected to rapid changes in their environment or to cellular damages, unicellular organisms such as bacteria exhibit strong physiological reactions called stress responses that can be sensed by conspecifics. The ability to detect and use stress-related cues released by conspecifics to acquire information about the environment constitutes an adaptive survival response by prompting the organism to avoid potential dangers. Here, we investigate stress signalling and its detection by conspecifics in a unicellular organism, Physarum polycephalum. Slime moulds were subjected to either biotic (i.e. nutritional) or abiotic (i.e. chemical and light) stressors or left undisturbed while they were exploring a homogeneous environment. Then, we observed the responses of slime moulds facing a choice between cues released by stressed clone mates and cues released by undisturbed ones. We found that slime moulds actively avoided environments previously explored by stressed clone mates. These results suggest that slime moulds, like bacteria or social amoeba, exhibit physiological responses to biotic and abiotic stresses that can be sensed by conspecifics. Our results establish slime moulds as a promising new model to investigate the use of social information in unicellular organisms. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.


Subject(s)
Cues , Physarum polycephalum/physiology , Signal Transduction , Stress, Physiological
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1774): 20180368, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31006372

ABSTRACT

Learning and memory are indisputably key features of animal success. Using information about past experiences is critical for optimal decision-making in a fluctuating environment. Those abilities are usually believed to be limited to organisms with a nervous system, precluding their existence in non-neural organisms. However, recent studies showed that the slime mould Physarum polycephalum, despite being unicellular, displays habituation, a simple form of learning. In this paper, we studied the possible substrate of both short- and long-term habituation in slime moulds. We habituated slime moulds to sodium, a known repellent, using a 6 day training and turned them into a dormant state named sclerotia. Those slime moulds were then revived and tested for habituation. We showed that information acquired during the training was preserved through the dormant stage as slime moulds still showed habituation after a one-month dormancy period. Chemical analyses indicated a continuous uptake of sodium during the process of habituation and showed that sodium was retained throughout the dormant stage. Lastly, we showed that memory inception via constrained absorption of sodium for 2 h elicited habituation. Our results suggest that slime moulds absorbed the repellent and used it as a 'circulating memory'. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.


Subject(s)
Physarum polycephalum/physiology , Sodium/adverse effects , Biological Transport , Decision Making , Learning , Memory , Physarum polycephalum/drug effects
4.
Sci Rep ; 5: 18650, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26686557

ABSTRACT

Lane segregation is rarely observed in animals that move in bidirectional flows. Consequently, these animals generally experience a high rate of head-on collisions during their journeys. Although these collisions have a cost (each collision induces a delay resulting in a decrease of individual speed), they could also have a benefit by promoting information transfer between individuals. Here we explore the impact of head-on collisions in leaf-cutting ants moving on foraging trails by artificially decreasing the rate of head-on collisions between individuals. We show that head-on collisions do not influence the rate of recruitment in these ants but do influence foraging efficiency, i.e. the proportion of ants returning to the nest with a leaf fragment. Surprisingly, both unladen and laden ants returning to the nest participate in the modulation of foraging efficiency: foraging efficiency decreases when the rate of contacts with both nestbound laden or unladen ants decreases. These results suggest that outgoing ants are able to collect information from inbound ants even when these latter do not carry any leaf fragment and that this information can influence their foraging decisions when reaching the end of the trail.


Subject(s)
Animal Communication , Ants/physiology , Feeding Behavior/physiology , Animals
5.
J Insect Physiol ; 69: 19-26, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24751909

ABSTRACT

In a foraging context, social insects make collective decisions from individuals responding to local information. When faced with foods varying in quality, ants are known to be able to select the best food source using pheromone trails. Until now, studies investigating collective decisions have focused on single nutrients, mostly carbohydrates. In the environment, the foods available are a complex mixture and are composed of various nutrients, available in different forms. In this paper, we explore the effect of protein to carbohydrate ratio on ants' ability to detect and choose between foods with different protein characteristics (free amino acids or whole proteins). In a two-choice set up, Argentine ants Linepithema humile were presented with two artificial foods containing either whole protein or amino acids in two different dietary conditions: high protein food or high carbohydrate food. At the collective level, when ants were faced with high carbohydrate foods, they did not show a preference between free amino acids or whole proteins, while a preference for free amino acids emerged when choosing between high protein foods. At the individual level, the probability of feeding was higher for high carbohydrates food and for foods containing free amino acids. Two mathematical models were developed to evaluate the importance of feeding probability in collective food selection. A first model in which a forager deposits pheromone only after feeding, and a second model in which a forager always deposits pheromone, but with greater intensity after feeding. Both models were able to predict free amino acid selection, however the second one was better able to reproduce the experimental results suggesting that modulating trail strength according to feeding probability is likely the mechanism explaining amino acid preference at a collective level in Argentine ants.


Subject(s)
Ants , Dietary Carbohydrates , Dietary Proteins , Food Preferences , Models, Biological , Amino Acids , Animals , Nutritional Physiological Phenomena
6.
Proc Biol Sci ; 279(1737): 2402-8, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22357267

ABSTRACT

A key determinant of the relationship between diet and longevity is the balance of protein and carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary insects. Here, we investigated the link between high-protein diet and longevity, both at the level of individual ants and colonies in black garden ants, Lasius niger. We explored how lifespan was affected by the dietary protein-to-carbohydrate ratio and the duration of exposure to a high-protein diet. We show that (i) restriction to high-protein, low-carbohydrate diets decreased worker lifespan by up to 10-fold; (ii) reduction in lifespan on such diets was mainly due to elevated intake of protein rather than lack of carbohydrate; and (iii) only one day of exposure to a high-protein diet had dire consequences for workers and the colony, reducing population size by more than 20 per cent.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Ants/physiology , Diet, Carbohydrate-Restricted , Dietary Proteins/adverse effects , Longevity/physiology , Animals , Eating/physiology , Population Dynamics , Regression Analysis , Statistics, Nonparametric , Survival Analysis
7.
Biosystems ; 103(1): 73-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20934484

ABSTRACT

A mathematical model of food recruitment and resource exploitation in group-living organisms accounting for direct traffic of individuals between the available sources is developed. It is shown that traffic between sources gives rise to the enhancement of the range of stability of the homogeneous mode of exploitation and of the range of coexistence of homogeneous and semi-inhomogeneous ones, as well as the appearance of symmetry breaking transitions leading to fully inhomogeneous exploitation modes.


Subject(s)
Ants/physiology , Models, Biological , Pheromones/physiology , Animals , Behavior, Animal , Feeding Behavior , Social Behavior
8.
Proc Biol Sci ; 276(1677): 4353-61, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19776073

ABSTRACT

Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.


Subject(s)
Ants/physiology , Decision Making/physiology , Models, Theoretical , Social Behavior , Stochastic Processes , Animals , Appetitive Behavior/physiology
9.
J Exp Biol ; 212(Pt 15): 2337-48, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19617426

ABSTRACT

In this paper we investigate the foraging activity of an invasive ant species, the big headed ant Pheidole megacephala. We establish that the ants' behavior is consistent with the use of two different pheromone signals, both of which recruit nestmates. Our experiments suggest that during exploration the ants deposit a long-lasting pheromone that elicits a weak recruitment of nestmates, while when exploiting food the ants deposit a shorter lasting pheromone eliciting a much stronger recruitment. We further investigate experimentally the role of these pheromones under both static and dynamic conditions and develop a mathematical model based on the hypothesis that exploration locally enhances exploitation, while exploitation locally suppresses exploration. The model and the experiments indicate that exploratory pheromone allows the colony to more quickly mobilize foragers when food is discovered. Furthermore, the combination of two pheromones allows colonies to track changing foraging conditions more effectively than would a single pheromone. In addition to the already known causes for the ecological success of invasive ant species, our study suggests that their opportunistic strategy of rapid food discovery and ability to react to changes in the environment may have strongly contributed to their dominance over native species.


Subject(s)
Ants/physiology , Behavior, Animal , Pheromones/physiology , Animals , Feeding Behavior , Half-Life , Models, Biological , Monte Carlo Method , Pheromones/chemistry , Social Behavior , Time Factors
10.
J Exp Biol ; 212(Pt 4): 499-505, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19181897

ABSTRACT

Foraging in leaf-cutting ants is generally organized along well-defined recruitment trails supporting a bi-directional flow of outbound and nestbound individuals. This study attempts to reveal the priority rules governing the organization of traffic on these trails. Ants were forced to move on a narrow trail, allowing the passage of only two individuals at a time. In this condition, a desynchronization of inbound and outbound traffic was observed, involving the formation of alternating clusters of inbound and outbound ants. Most clusters of inbound ants were headed by laden ants followed by unladen ants. This occurred because inbound unladen ants did not attempt to overtake the laden ants in front of them. As unladen ants move on average faster than laden ants, these ants were thus forced to decrease their speed. By contrast, this decrease was counterbalanced by the fact that, by staying in a cluster instead of moving in isolation, inbound unladen ants limit the number of head-on encounters with outbound ants. Our analysis shows that the delay induced by these head-on encounters would actually be twice as high as the delay induced by the forced decrease in speed incurred by ants staying in a cluster. The cluster organization also promotes information transfer about the level of food availability by increasing the number of contacts between outbound and inbound laden ants, which could possibly stimulate these former to cut and retrieve leaf fragments when reaching the end of the trail.


Subject(s)
Animal Communication , Ants , Animals , Feeding Behavior , Motor Activity , Social Facilitation
11.
J Theor Biol ; 254(3): 580-6, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18647608

ABSTRACT

Collective foraging in group living animal populations displaying behavioral polymorphism is considered. Using mathematical modeling it is shown that symmetric, spatially homogeneous (food sources are used equally) and asymmetric, spatially inhomogeneous (only one food source is used) regimes can coexist, as a result of differential amplification of choice depending on behavioral type. The model accounts for recent experimental results on social caterpillars not only confirming this coexistence, but also showing the relationship between the two types of regime and the ratio of active to inactive individuals.


Subject(s)
Appetitive Behavior , Decision Making , Models, Biological , Animals , Consensus , Feeding Behavior , Larva/physiology
12.
J Exp Biol ; 211(Pt 14): 2224-32, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18587116

ABSTRACT

Ants and all social insects are faced with a nutritional challenge: the food entering the colony is brought by only a small number of its workers but is shared among all members of the colony. In this study, we investigated how ants maintain carbohydrates supply at both a collective and an individual level in response to changes in the concentration of available sucrose solution, colony demography and larval growth. We manipulated the concentration of sugar solutions available to ant colonies (dilute, medium and concentrated solutions) over extended periods and measured the capacity of colonies to maintain sugar supply through compensatory feeding. First, we demonstrated that ants regulated carbohydrate intake at a collective and individual level. Initially, ants consumed most and recruited fastest in response to more concentrated than to dilute sugar solutions, but over time this pattern reversed, such that the number of ants that fed and the volume ingested by each ant was a negative function of sugar concentration in the diet. Second, we found that ants became better at regulating their carbohydrate intake with the production of larvae in the nest. When the number of larvae was experimentally doubled, the ants regulated their consumption of carbohydrates more accurately than when the number of adult workers was doubled, suggesting that larvae play an important role in providing nutritional feedback to workers. Finally, we showed that ants defended a carbohydrate ;intake target' by allowing them to select among sugar solutions of different concentration.


Subject(s)
Ants/physiology , Behavior, Animal , Social Behavior , Sucrose/metabolism , Animals , Ants/growth & development , Feeding Behavior , Larva/growth & development , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...