Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 9(4)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453469

ABSTRACT

Anopheles albimanus Wiedemann is a major malaria vector in Mesoamerica and the Caribbean whose population dynamics, in response to changing environments, has been relatively poorly studied. Here, we present monthly adult and larvae data collected from May 2016 to December 2017 in Ipetí-Guna, a village within an area targeted for malaria elimination in the República de Panamá. During the study period we collected a total of 1678 Anopheles spp. mosquitoes (1602 adults and 76 larvae). Over 95% of the collected Anopheles spp. mosquitoes were An. albimanus. Using time series analysis techniques, we found that population dynamics of larvae and adults were not significantly correlated with each other at any time lag, though correlations were highest at one month lag between larvae and adults and four months lag between adults and larvae. Larvae population dynamics had cycles of three months and were sensitive to changes in temperature with 5 months lag, while adult abundance was correlated with itself (1 month lag) and with the normalized difference vegetation index (NDVI) with three months lag. A key observation from our study is the absence of both larvae and adults of An. albimanus between January and April from environments associated with Guna population's daily activities, which suggests this time window could be the best time to implement elimination campaigns aimed at clearing Plasmodium spp. parasites from Guna populations using, for example, mass drug administration.

2.
PLoS Negl Trop Dis ; 10(7): e0004870, 2016 07.
Article in English | MEDLINE | ID: mdl-27463518

ABSTRACT

Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite development.


Subject(s)
Malaria, Vivax/parasitology , Plasmodium vivax , Animals , Aotidae , Cell Culture Techniques/methods , Culture Media , Female , Plasmodium vivax/classification , Reticulocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...