Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Article in English | MEDLINE | ID: mdl-33037135

ABSTRACT

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Subject(s)
Antibodies, Bispecific/pharmacology , Apoptosis , Cadherins/metabolism , Colorectal Neoplasms/pathology , Liver/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Humans , Liver/drug effects , Mice , Neoplasm Metastasis , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Remission Induction
2.
Biochem Biophys Res Commun ; 504(1): 19-24, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30126632

ABSTRACT

Patients with severe Th2 type asthma often have a steroid resistant phenotype and are prone to acute exacerbations. Current novel therapies have only marginal therapeutic effects. One of the hypotheses for lack of major efficacy in most patients is targeting only one redundant pathway leaving others active. Hence, we have designed and developed novel highly potent bispecific anti-TSLP/IL13 antibodies called Zweimabs (monovalent bispecific) and Doppelmabs (bivalent bispecific) that concurrently inhibits the signaling by these two cytokines.


Subject(s)
Antibodies, Bispecific/chemistry , Cytokines/immunology , Interleukin-13/immunology , Antibodies, Monoclonal/chemistry , Cells, Cultured , Cytokines/chemistry , Epitope Mapping , Humans , Interleukin-13/chemistry , Thymic Stromal Lymphopoietin
3.
J Med Chem ; 57(23): 10112-29, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25411915

ABSTRACT

A series of 2,3,4,4a,10,10a-hexahydropyrano[3,2-b]chromene analogs was developed that demonstrated high selectivity (>2000-fold) for BACE1 vs Cathepsin D (CatD). Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Guided by structure based design, changes to P2' and P3 moieties were explored. A conformationally restricted P2' methyl group provided inhibitors with excellent cell potency (37-137 nM) and selectivity (435 to >2000-fold) for BACE1 vs CatD. These efforts lead to compound 59, which demonstrated a 69% reduction in rat CSF Aß1-40 at 60 mg/kg (PO).


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Chromans/chemical synthesis , Protease Inhibitors/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Brain/metabolism , Cathepsin D , Chromans/pharmacokinetics , Chromans/pharmacology , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Molecular , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
4.
J Med Chem ; 57(3): 878-902, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24397738

ABSTRACT

In an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using structure-based design, substitutions to improve binding to both the S3 and S2' sites of BACE1 were explored. An acyl guanidine moiety provided the most potent analogues. These compounds demonstrated 10-420 fold selectivity for BACE1 vs CatD, and were highly potent in a cell assay measuring Aß1-40 production (5-99 nM). They also suffered from high efflux. Despite this undesirable property, two of the acyl guanidines achieved free brain concentrations (Cfree,brain) in a guinea pig PD model sufficient to cover their cell IC50s. Moreover, a significant reduction of Aß1-40 in guinea pig, rat, and cyno CSF (58%, 53%, and 63%, respectively) was observed for compound 62.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Chromans/chemical synthesis , Pyrans/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , CHO Cells , Cell Line, Tumor , Chromans/pharmacokinetics , Chromans/pharmacology , Cricetinae , Cricetulus , Crystallography, X-Ray , Guinea Pigs , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Models, Molecular , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
5.
J Med Chem ; 56(8): 3379-403, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23537249

ABSTRACT

A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aß), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aß is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aß in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aß lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aß in rodents and in monkey.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/cerebrospinal fluid , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Chromans/chemical synthesis , Chromans/pharmacokinetics , Chromans/pharmacology , Guinea Pigs , HEK293 Cells , Humans , Hydantoins/chemical synthesis , Hydantoins/pharmacokinetics , Hydantoins/pharmacology , Male , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(3): 731-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16263283

ABSTRACT

A series of conformationally constrained bicyclic derivatives derived from SR141716 was prepared and evaluated as hCB(1)-R antagonists and inverse agonists. Optimization of the structure-activity relationships around the 2,6-dihydro-pyrazolo[4,3-d]pyrimidin-7-one derivative 2a led to the identification of two compounds with oral activity in rodent feeding models (2h and 4a). Replacement of the PP group in 2h with other bicyclic groups resulted in a loss of binding affinity.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Feeding Behavior/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Binding Sites , Feeding Behavior/physiology , Models, Biological , Piperidines/chemistry , Pyrazoles/chemistry , Pyrazolones/chemistry , Pyrimidinones/chemistry , Receptor, Cannabinoid, CB1/agonists , Rimonabant , Rodentia , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...