Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38742287

ABSTRACT

De novo evolved genes emerge from random parts of noncoding sequences and have, therefore, no homologs from which a function could be inferred. While expression analysis and knockout experiments can provide insights into the function, they do not directly test whether the gene is beneficial for its carrier. Here, we have used a seminatural environment experiment to test the fitness of the previously identified de novo evolved mouse gene Pldi, which has been implicated to have a role in sperm differentiation. We used a knockout mouse strain for this gene and competed it against its parental wildtype strain for several generations of free reproduction. We found that the knockout (ko) allele frequency decreased consistently across three replicates of the experiment. Using an approximate Bayesian computation framework that simulated the data under a demographic scenario mimicking the experiment's demography, we could estimate a selection coefficient ranging between 0.21 and 0.61 for the wildtype allele compared to the ko allele in males, under various models. This implies a relatively strong selective advantage, which would fix the new gene in less than hundred generations after its emergence.


Subject(s)
Genetic Fitness , Mice, Knockout , Animals , Mice , Male , Evolution, Molecular , Gene Frequency , Selection, Genetic , Bayes Theorem , Female , Models, Genetic , Alleles
2.
Genetics ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565705

ABSTRACT

The rate at which recombination events occur in a population is an indicator of its effective population size and the organism's reproduction mode. It determines the extent of linkage disequilibrium along the genome and, thereby, the efficacy of both purifying and positive selection. The population recombination rate can be inferred using models of genome evolution in populations. Classic methods based on the patterns of linkage-disequilibrium provide the most accurate estimates, providing large sample sizes are used and the demography of the population is properly accounted for. Here, the capacity of approaches based on the sequentially Markov coalescent (SMC) to infer the genome-average recombination rate from as little as a single diploid genome is examined. SMC approaches provide highly accurate estimates even in the presence of changing population sizes, providing that (1) within genome heterogeneity is accounted for and (2) classic maximum-likelihood optimization algorithms are employed to fit the model. SMC-based estimates proved sensitive to gene conversion, leading to an overestimation of the recombination rate if conversion events are frequent. Conversely, methods based on the correlation of heterozygosity succeed in disentangling the rate of crossing over from that of gene conversion events, but only when the population size is constant and the recombination landscape homogeneous. These results call for a convergence of these two methods to obtain accurate and comparable estimates of recombination rates between populations.

3.
Proc Biol Sci ; 291(2016): 20232308, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38320616

ABSTRACT

Migratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity in vitro compared to Cry4a from resident species. We investigate Cry and their potential involvement in magnetoreception in a phylogenetic framework, integrating molecular evolutionary analyses with protein dynamics modelling. Our analysis is based on 363 bird genomes and identifies different selection regimes in passerines. We show that Cry4a is characterized by strong positive selection and high variability, typical characteristics of sensor proteins. We identify key sites that are likely to have facilitated the evolution of an optimized sensory protein for night-time orientation in songbirds. Additionally, we show that Cry4 was lost in hummingbirds, parrots and Tyranni (Suboscines), and thus identified a gene deletion, which might facilitate testing the function of Cry4a in birds. In contrast, the other avian Cry (Cry1 and Cry2) were highly conserved across all species, indicating basal, non-sensory functions. Our results support a specialization or functional differentiation of Cry4 in songbirds which could be magnetosensation.


Subject(s)
Songbirds , Animals , Phylogeny , Songbirds/physiology , Cryptochromes/metabolism , Magnetic Fields , Animal Migration/physiology
4.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38252924

ABSTRACT

Comparative sequence analysis permits unraveling the molecular processes underlying gene evolution. Many statistical methods generate candidate positions within genes, such as fast or slowly evolving sites, coevolving groups of residues, sites undergoing positive selection, or changes in evolutionary rates. Understanding the functional causes of these evolutionary patterns requires combining the results of these analyses and mapping them onto molecular structures, a complex task involving distinct coordinate referential systems. To ease this task, we introduce the site/group extended data format, a simple text format to store (groups of) site annotations. We developed a toolset, the SgedTools, which permits site/group extended data file manipulation, creating them from various software outputs and translating coordinates between individual sequences, alignments, and three-dimensional structures. The package also includes a Monte-Carlo procedure to generate random site samples, possibly conditioning on site-specific features. This eases the statistical testing of evolutionary hypotheses, accounting for the structural properties of the encoded molecules.


Subject(s)
Evolution, Molecular , Software , Sequence Alignment , Sequence Analysis
5.
Genome Biol Evol ; 16(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38198800

ABSTRACT

Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.


Subject(s)
Genomics , Songbirds , Animals , Songbirds/genetics , CpG Islands , DNA Methylation , Recombination, Genetic
6.
Science ; 380(6648): eabn4409, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37262154

ABSTRACT

Incomplete lineage sorting (ILS) causes the phylogeny of some parts of the genome to differ from the species tree. In this work, we investigate the frequencies and determinants of ILS in 29 major ancestral nodes across the entire primate phylogeny. We find up to 64% of the genome affected by ILS at individual nodes. We exploit ILS to reconstruct speciation times and ancestral population sizes. Estimated speciation times are much more recent than genomic divergence times and are in good agreement with the fossil record. We show extensive variation of ILS along the genome, mainly driven by recombination but also by the distance to genes, highlighting a major impact of selection on variation along the genome. In many nodes, ILS is reduced more on the X chromosome compared with autosomes than expected under neutrality, which suggests higher impacts of natural selection on the X chromosome. Finally, we show an excess of ILS in genes with immune functions and a deficit of ILS in housekeeping genes. The extensive ILS in primates discovered in this study provides insights into the speciation times, ancestral population sizes, and patterns of natural selection that shape primate evolution.


Subject(s)
Genetic Speciation , Genetic Variation , Genome , Primates , Animals , Genomics , Phylogeny , Primates/genetics
7.
Mol Ecol ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157166

ABSTRACT

Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive ( ω a $$ {\omega}_a $$ ) and non-adaptive ( ω na $$ {\omega}_{na} $$ ) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill-Robertson interference, as recombination was found to be negatively correlated with ω na $$ {\omega}_{na} $$ and positively correlated with ω a $$ {\omega}_a $$ . However, the effect of recombination on ω a $$ {\omega}_a $$ was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation with ω na $$ {\omega}_{na} $$ , suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations.

8.
PLoS Comput Biol ; 19(4): e1010982, 2023 04.
Article in English | MEDLINE | ID: mdl-37079488

ABSTRACT

Expression noise, the variability of the amount of gene product among isogenic cells grown in identical conditions, originates from the inherent stochasticity of diffusion and binding of the molecular players involved in transcription and translation. It has been shown that expression noise is an evolvable trait and that central genes exhibit less noise than peripheral genes in gene networks. A possible explanation for this pattern is increased selective pressure on central genes since they propagate their noise to downstream targets, leading to noise amplification. To test this hypothesis, we developed a new gene regulatory network model with inheritable stochastic gene expression and simulated the evolution of gene-specific expression noise under constraint at the network level. Stabilizing selection was imposed on the expression level of all genes in the network and rounds of mutation, selection, replication and recombination were performed. We observed that local network features affect both the probability to respond to selection, and the strength of the selective pressure acting on individual genes. In particular, the reduction of gene-specific expression noise as a response to stabilizing selection on the gene expression level is higher in genes with higher centrality metrics. Furthermore, global topological structures such as network diameter, centralization and average degree affect the average expression variance and average selective pressure acting on constituent genes. Our results demonstrate that selection at the network level leads to differential selective pressure at the gene level, and local and global network characteristics are an essential component of gene-specific expression noise evolution.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Gene Regulatory Networks/genetics , Phenotype , Gene Expression
9.
PLoS Biol ; 20(9): e3001775, 2022 09.
Article in English | MEDLINE | ID: mdl-36099311

ABSTRACT

Understanding the dynamics of species adaptation to their environments has long been a central focus of the study of evolution. Theories of adaptation propose that populations evolve by "walking" in a fitness landscape. This "adaptive walk" is characterised by a pattern of diminishing returns, where populations further away from their fitness optimum take larger steps than those closer to their optimal conditions. Hence, we expect young genes to evolve faster and experience mutations with stronger fitness effects than older genes because they are further away from their fitness optimum. Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be masking the effect of gene age. While controlling for these factors, we used population genomic data sets of Arabidopsis and Drosophila and estimated the rate of adaptive substitutions across genes from different phylostrata. We found that a gene's evolutionary age significantly impacts the molecular rate of adaptation. Moreover, we observed that substitutions in young genes tend to have larger physicochemical effects. Our study, therefore, provides strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale.


Subject(s)
Arabidopsis , Drosophila , Adaptation, Physiological/genetics , Animals , Arabidopsis/genetics , Drosophila/genetics , Evolution, Molecular , Models, Genetic
10.
Virulence ; 13(1): 1020-1031, 2022 12.
Article in English | MEDLINE | ID: mdl-35635339

ABSTRACT

White-nose syndrome has killed millions of bats, yet both the origins and infection strategy of the causative fungus, Pseudogymnoascus destructans, remain elusive. We provide evidence for a novel hypothesis that P. destructans emerged from plant-associated fungi and retained invasion strategies affiliated with fungal pathogens of plants. We demonstrate that P. destructans invades bat skin in successive biotrophic and necrotrophic stages (hemibiotrophic infection), a mechanism previously only described in plant fungal pathogens. Further, the convergence of hyphae at hair follicles suggests nutrient tropism. Tropism, biotrophy, and necrotrophy are often associated with structures termed appressoria in plant fungal pathogens; the penetrating hyphae produced by P. destructans resemble appressoria. Finally, we conducted a phylogenomic analysis of a taxonomically diverse collection of fungi. Despite gaps in genetic sampling of prehistoric and contemporary fungal species, we estimate an 88% probability the ancestral state of the clade containing P. destructans was a plant-associated fungus.


Subject(s)
Ascomycota , Chiroptera , Hibernation , Animals , Ascomycota/genetics , Chiroptera/microbiology , Nose/microbiology
11.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35349721

ABSTRACT

Compensatory substitutions happen when one mutation is advantageously selected because it restores the loss of fitness induced by a previous deleterious mutation. How frequent such mutations occur in evolution and what is the structural and functional context permitting their emergence remain open questions. We built an atlas of intra-protein compensatory substitutions using a phylogenetic approach and a dataset of 1,630 bacterial protein families for which high-quality sequence alignments and experimentally derived protein structures were available. We identified more than 51,000 positions coevolving by the mean of predicted compensatory mutations. Using the evolutionary and structural properties of the analyzed positions, we demonstrate that compensatory mutations are scarce (typically only a few in the protein history) but widespread (the majority of proteins experienced at least one). Typical coevolving residues are evolving slowly, are located in the protein core outside secondary structure motifs, and are more often in contact than expected by chance, even after accounting for their evolutionary rate and solvent exposure. An exception to this general scheme is residues coevolving for charge compensation, which are evolving faster than noncoevolving sites, in contradiction with predictions from simple coevolutionary models, but similar to stem pairs in RNA. While sites with a significant pattern of coevolution by compensatory mutations are rare, the comparative analysis of hundreds of structures ultimately permits a better understanding of the link between the three-dimensional structure of a protein and its fitness landscape.


Subject(s)
Evolution, Molecular , Proteins , Amino Acid Motifs , Mutation , Phylogeny , Proteins/chemistry , Proteins/genetics , Sequence Alignment
12.
Genome Biol Evol ; 13(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33837781

ABSTRACT

The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen. We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.


Subject(s)
Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/pathogenicity , Biological Evolution , Genetic Variation , Mating Factor/genetics , Mexico , Virulence , Zea mays/microbiology
13.
Ecol Evol ; 10(20): 11117-11132, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144953

ABSTRACT

Homing endonucleases (HE) are enzymes capable of cutting DNA at highly specific target sequences, the repair of the generated double-strand break resulting in the insertion of the HE-encoding gene ("homing" mechanism). HEs are present in all three domains of life and viruses; in eukaryotes, they are mostly found in the genomes of mitochondria and chloroplasts, as well as nuclear ribosomal RNAs. We here report the case of a HE that accidentally integrated into a telomeric region of the nuclear genome of the fungal maize pathogen Ustilago maydis. We show that the gene has a mitochondrial origin, but its original copy is absent from the U. maydis mitochondrial genome, suggesting a subsequent loss or a horizontal transfer from a different species. The telomeric HE underwent mutations in its active site and lost its original start codon. A potential other start codon was retained downstream, but we did not detect any significant transcription of the newly created open reading frame, suggesting that the inserted gene is not functional. Besides, the insertion site is located in a putative RecQ helicase gene, truncating the C-terminal domain of the protein. The truncated helicase is expressed during infection of the host, together with other homologous telomeric helicases. This unusual mutational event altered two genes: The integrated HE gene subsequently lost its homing activity, while its insertion created a truncated version of an existing gene, possibly altering its function. As the insertion is absent in other field isolates, suggesting that it is recent, the U. maydis 521 reference strain offers a snapshot of this singular mutational event.

14.
Front Microbiol ; 11: 626, 2020.
Article in English | MEDLINE | ID: mdl-32373089

ABSTRACT

Comparative genome analyses of eukaryotic pathogens including fungi and oomycetes have revealed extensive variability in genome composition and structure. The genomes of individuals from the same population can exhibit different numbers of chromosomes and different organization of chromosomal segments, defining so-called accessory compartments that have been shown to be crucial to pathogenicity in plant-infecting fungi. This high level of structural variation confers a methodological challenge for population genomic analyses. Variant discovery from population sequencing data is typically achieved using established pipelines based on the mapping of short reads to a reference genome. These pipelines have been developed, and extensively used, for eukaryote genomes of both plants and animals, to retrieve single nucleotide polymorphisms and short insertions and deletions. However, they do not permit the inference of large-scale genomic structural variation, as this task typically requires the alignment of complete genome sequences. Here, we compare traditional variant discovery approaches to a pipeline based on de novo genome assembly of short read data followed by whole genome alignment, using simulated data sets with properties mimicking that of fungal pathogen genomes. We show that the latter approach exhibits levels of performance comparable to that of read-mapping based methodologies, when used on sequence data with sufficient coverage. We argue that this approach further allows additional types of genomic diversity to be explored, in particular as long-read third-generation sequencing technologies are becoming increasingly available to generate population genomic data.

15.
Methods Mol Biol ; 2090: 21-48, 2020.
Article in English | MEDLINE | ID: mdl-31975162

ABSTRACT

As the number of available genome sequences from both closely related species and individuals within species increased, theoretical and methodological convergences between the fields of phylogenomics and population genomics emerged. Population genomics typically focuses on the analysis of variants, while phylogenomics heavily relies on genome alignments. However, these are playing an increasingly important role in studies at the population level. Multiple genome alignments of individuals are used when structural variation is of primary interest and when genome architecture permits to assemble de novo genome sequences. Here I describe MafFilter, a command-line-driven program allowing to process genome alignments in the Multiple Alignment Format (MAF). Using concrete examples based on publicly available datasets, I demonstrate how MafFilter can be used to develop efficient and reproducible pipelines with quality assurance for downstream analyses. I further show how MafFilter can be used to perform both basic and advanced population genomic analyses in order to infer the patterns of nucleotide diversity along genomes.


Subject(s)
Computational Biology/methods , Sequence Alignment/methods , Algorithms , Animals , Genetics, Population , Genome , Humans , Phylogeny
16.
Methods Mol Biol ; 2090: 3-17, 2020.
Article in English | MEDLINE | ID: mdl-31975161

ABSTRACT

Population genomics is a growing field stemming from soon a 100 years of developments in population genetics. Here, we summarize the main concepts and terminology underlying both theoretical and empirical statistical population genomics studies. We provide the reader with pointers toward the original literature as well as methodological and historical reviews.


Subject(s)
Genomics/methods , Terminology as Topic , Genetics, Population , Models, Genetic , Mutation
18.
PLoS Genet ; 15(11): e1008449, 2019 11.
Article in English | MEDLINE | ID: mdl-31725722

ABSTRACT

Understanding the causes and consequences of recombination landscape evolution is a fundamental goal in genetics that requires recombination maps from across the tree of life. Such maps can be obtained from population genomic datasets, but require large sample sizes. Alternative methods are therefore necessary to research organisms where such datasets cannot be generated easily, such as non-model or ancient species. Here we extend the sequentially Markovian coalescent model to jointly infer demography and the spatial variation in recombination rate. Using extensive simulations and sequence data from humans, fruit-flies and a fungal pathogen, we demonstrate that iSMC accurately infers recombination maps under a wide range of scenarios-remarkably, even from a single pair of unphased genomes. We exploit this possibility and reconstruct the recombination maps of ancient hominins. We report that the ancient and modern maps are correlated in a manner that reflects the established phylogeny of Neanderthals, Denisovans, and modern human populations.


Subject(s)
Genome, Human/genetics , Hominidae/genetics , Metagenomics , Recombination, Genetic/genetics , Animals , Chromosome Mapping , Genetic Variation/genetics , Humans , Markov Chains , Neanderthals/genetics , Paleontology/trends , Phylogeny
19.
Methods Mol Biol ; 1910: 555-589, 2019.
Article in English | MEDLINE | ID: mdl-31278677

ABSTRACT

Borrowing both from population genetics and phylogenetics, the field of population genomics emerged as full genomes of several closely related species were available. Providing we can properly model sequence evolution within populations undergoing speciation events, this resource enables us to estimate key population genetics parameters such as ancestral population sizes and split times. Furthermore we can enhance our understanding of the recombination process and investigate various selective forces. With the advent of resequencing technologies, genome-wide patterns of diversity in extant populations have now come to complement this picture, offering an increasing power to study more recent genetic history.We discuss the basic models of genomes in populations, including speciation models for closely related species. A major point in our discussion is that only a few complete genomes contain much information about the whole population. The reason being that recombination unlinks genomic regions, and therefore a few genomes contain many segments with distinct histories. The challenge of population genomics is to decode this mosaic of histories in order to infer scenarios of demography and selection. We survey modeling strategies for understanding genetic variation in ancestral populations and species. The underlying models build on the coalescent with recombination process and introduce further assumptions to scale the analyses to genomic data sets.


Subject(s)
Evolution, Molecular , Genetics, Population , Genome , Genomics , Animals , Gene Flow , Genetic Variation , Genomics/methods , Humans , Markov Chains , Models, Genetic , Population Dynamics , Recombination, Genetic , Selection, Genetic
20.
Evol Lett ; 3(3): 299-312, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31171985

ABSTRACT

Unravelling the strength, frequency, and distribution of selective variants along the genome as well as the underlying factors shaping this distribution are fundamental goals of evolutionary biology. Antagonistic host-pathogen coevolution is thought to be a major driver of genome evolution between interacting species. While rapid evolution of pathogens has been documented in several model organisms, the genetic mechanisms of their adaptation are still poorly understood and debated, particularly the role of sexual reproduction. Here, we apply a population genomic approach to infer genome-wide patterns of selection among 13 isolates of Zymoseptoria tritici, a fungal pathogen characterized by extremely high genetic diversity, gene density, and recombination rates. We report that the genome of Z. tritici undergoes a high rate of adaptive substitutions, with 44% of nonsynonymous substitutions being adaptive on average. This fraction reaches 68% in so-called effector genes encoding determinants of pathogenicity, and the distribution of fitness effects differs in this class of genes as they undergo adaptive mutations with stronger positive fitness effects, but also more slightly deleterious mutations. Besides the globally high rate of adaptive substitutions, we report a negative relationship between pN/pS and the fine-scale recombination rate and a strong positive correlation between the rate of adaptive nonsynonymous substitutions (ωa) and recombination rate. This result suggests a pervasive role of both background selection and Hill-Robertson interference even in a species with an exceptionally high recombination rate (60 cM/Mb on average). While transposable elements (TEs) have been suggested to contribute to adaptation by creating compartments of fast-evolving genomic regions, we do not find a significant effect of TEs on the rate of adaptive mutations. Overall our study suggests that sexual recombination is a significant driver of genome evolution, even in rapidly evolving organisms subject to recurrent mutations with large positive effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...