Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Sci Rep ; 7: 41802, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176819

ABSTRACT

Alzheimer's disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer's disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aß precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aß amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aß pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aß levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3452-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737035

ABSTRACT

Handedness is a prominent but poorly understood aspect of human motor performances. Despite it is generally accepted that it results from differences in the neural control of the arm, the mechanisms at the origin of the side-difference in motor performances are still unknown. In this work, we propose to deepen this aspect by investigating muscle synergies organization. We obtained muscle synergies through the factorization of the superficial electromyographical (EMG) activity related to fifteen upper limb muscles in the dominant and non-dominant side of 5 healthy young right and left dominant subjects, while executing planar wide and tight circular trajectories. Our preliminary results showed that right and left handed subjects performed the circular trajectories with a different muscle organization. Moreover, a task-related side-difference in muscle synergies was observed. Further investigations in a larger cohort of individuals are necessary to determine the neural mechanisms generating the differences in number and organization of muscle synergies between left and right handed individuals.


Subject(s)
Functional Laterality/physiology , Muscle, Skeletal/physiology , Adult , Arm/physiology , Electromyography , Female , Humans , Male , Movement/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...