Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(11): 10225-10234, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969436

ABSTRACT

The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material's bactericidal activity on Gram-negative Escherichia coli (E. coli). GO flakes do not affect Fmoc-F self-assembly per se but modulate the elasticity of the gel and speed up its formation. The hybrid hydrogel affects E. coli survival, initially causing abrupt bacterial death followed by the recovery of the surviving ones due to the inoculum effect (IE). The combination of graphene with amino acids is a step forward in developing antimicrobial gels due to their easy preparation, chemical modification, graphene functionalization, cost-effectiveness, and physicochemical/biological synergy of each component.

2.
Virol J ; 15(1): 22, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29368617

ABSTRACT

BACKGROUND: Since the discovery of giant viruses infecting amoebae in 2003, many dogmas of virology have been revised and the search for these viruses has been intensified. Over the last few years, several new groups of these viruses have been discovered in various types of samples and environments.In this work, we describe the isolation of 68 giant viruses of amoeba obtained from environmental samples from Brazil and Antarctica. METHODS: Isolated viruses were identified by hemacolor staining, PCR assays and electron microscopy (scanning and/or transmission). RESULTS: A total of 64 viruses belonging to the Mimiviridae family were isolated (26 from lineage A, 13 from lineage B, 2 from lineage C and 23 from unidentified lineages) from different types of samples, including marine water from Antarctica, thus being the first mimiviruses isolated in this extreme environment to date. Furthermore, a marseillevirus was isolated from sewage samples along with two pandoraviruses and a cedratvirus (the third to be isolated in the world so far). CONCLUSIONS: Considering the different type of samples, we found a higher number of viral groups in sewage samples. Our results reinforce the importance of prospective studies in different environmental samples, therefore improving our comprehension about the circulation anddiversity of these viruses in nature.


Subject(s)
Environmental Microbiology , Giant Viruses/genetics , Giant Viruses/isolation & purification , Amoeba , Animals , Antarctic Regions , Brazil , DNA, Viral , Genome, Viral , Geography , Giant Viruses/classification , Giant Viruses/ultrastructure , Humans , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...