Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(7): e101685, 2014.
Article in English | MEDLINE | ID: mdl-25010664

ABSTRACT

Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13-1.43, p = 6.77×10(-5)), which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas (FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34-0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.


Subject(s)
DNA Repair/genetics , Genetic Predisposition to Disease/genetics , Lymphoma, Non-Hodgkin/genetics , Polymorphism, Single Nucleotide , Epistasis, Genetic/genetics , Genomics , Humans , Quantitative Trait Loci/genetics
2.
PLoS Genet ; 9(1): e1003220, 2013.
Article in English | MEDLINE | ID: mdl-23349640

ABSTRACT

The genetics of lymphoma susceptibility reflect the marked heterogeneity of diseases that comprise this broad phenotype. However, multiple subtypes of lymphoma are observed in some families, suggesting shared pathways of genetic predisposition to these pathologically distinct entities. Using a two-stage GWAS, we tested 530,583 SNPs in 944 cases of lymphoma, including 282 familial cases, and 4,044 public shared controls, followed by genotyping of 50 SNPs in 1,245 cases and 2,596 controls. A novel region on 11q12.1 showed association with combined lymphoma (LYM) subtypes. SNPs in this region included rs12289961 near LPXN, (P(LYM) = 3.89×10(-8), OR = 1.29) and rs948562 (P(LYM) = 5.85×10(-7), OR = 1.29). A SNP in a novel non-HLA region on 6p23 (rs707824, P(NHL) = 5.72×10(-7)) was suggestive of an association conferring susceptibility to lymphoma. Four SNPs, all in a previously reported HLA region, 6p21.32, showed genome-wide significant associations with follicular lymphoma. The most significant association with follicular lymphoma was for rs4530903 (P(FL) = 2.69×10(-12), OR = 1.93). Three novel SNPs near the HLA locus, rs9268853, rs2647046, and rs2621416, demonstrated additional variation contributing toward genetic susceptibility to FL associated with this region. Genes implicated by GWAS were also found to be cis-eQTLs in lymphoblastoid cell lines; candidate genes in these regions have been implicated in hematopoiesis and immune function. These results, showing novel susceptibility regions and allelic heterogeneity, point to the existence of pathways of susceptibility to both shared as well as specific subtypes of lymphoid malignancy.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Leukemia, Lymphoid/genetics , Quantitative Trait Loci , Alleles , Cell Line, Tumor , Chromosomes, Human, Pair 11 , Gene Expression , Humans , Leukemia, Lymphoid/pathology , Lymphoma, Follicular , Polymorphism, Single Nucleotide
3.
Hum Genet ; 131(7): 1173-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22271044

ABSTRACT

Genetic variation on the Y chromosome has not been convincingly implicated in prostate cancer risk. To comprehensively analyze the role of inherited Y chromosome variation in prostate cancer risk in individuals of European ancestry, we genotyped 34 binary Y chromosome markers in 3,995 prostate cancer cases and 3,815 control subjects drawn from four studies. In this set, we identified nominally significant association between a rare haplogroup, E1b1b1c, and prostate cancer in stage I (P = 0.012, OR = 0.51; 95% confidence interval 0.30-0.87). Population substructure of E1b1b1c carriers suggested Ashkenazi Jewish ancestry, prompting a replication phase in individuals of both European and Ashkenazi Jewish ancestry. The association was not significant for prostate cancer overall in studies of either Ashkenazi Jewish (1,686 cases and 1,597 control subjects) or European (686 cases and 734 control subjects) ancestry (P(meta) = 0.078), but a meta-analysis of stage I and II studies revealed a nominally significant association with prostate cancer risk (P(meta) = 0.010, OR = 0.77; 95% confidence interval 0.62-0.94). Comparing haplogroup frequencies between studies, we noted strong similarities between those conducted in the US and France, in which the majority of men carried R1 haplogroups, resembling Northwestern European populations. On the other hand, Finns had a remarkably different haplogroup distribution with a preponderance of N1c and I1 haplogroups. In summary, our results suggest that inherited Y chromosome variation plays a limited role in prostate cancer etiology in European populations but warrant follow-up in additional large and well characterized studies of multiple ethnic backgrounds.


Subject(s)
Chromosomes, Human, Y/genetics , Jews/genetics , Prostatic Neoplasms/genetics , White People/genetics , Base Sequence , Ethnicity/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Genotype , Haplotypes , Humans , Male , Prostatic Neoplasms/ethnology , Sequence Analysis, DNA
4.
Clin Cancer Res ; 16(10): 2819-32, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20460480

ABSTRACT

PURPOSE: Prostate cancer is a heterogeneous disease with a variable natural history that is not accurately predicted by currently used prognostic tools. EXPERIMENTAL DESIGN: We genotyped 798 prostate cancer cases of Ashkenazi Jewish ancestry treated for localized prostate cancer between June 1988 and December 2007. Blood samples were prospectively collected and de-identified before being genotyped and matched to clinical data. The survival analysis was adjusted for Gleason score and prostate-specific antigen. We investigated associations between 29 single nucleotide polymorphisms (SNP) and biochemical recurrence, castration-resistant metastasis, and prostate cancer-specific survival. Subsequently, we did an independent analysis using a high-resolution panel of 13 SNPs. RESULTS: On univariate analysis, two SNPs were associated (P<0.05) with biochemical recurrence, three SNPs were associated with clinical metastases, and one SNP was associated with prostate cancer-specific mortality. Applying a Bonferroni correction (P<0.0017), one association with biochemical recurrence (P=0.0007) was significant. Three SNPs showed associations on multivariable analysis, although not after correcting for multiple testing. The secondary analysis identified an additional association with prostate cancer-specific mortality in KLK3 (P<0.0005 by both univariate and multivariable analysis). CONCLUSIONS: We identified associations between prostate cancer susceptibility SNPs and clinical end points. The rs61752561 in KLK3 and rs2735839 in the KLK2-KLK3 intergenic region were strongly associated with prostate cancer-specific survival, and rs10486567 in the 7JAZF1 gene were associated with biochemical recurrence. A larger study will be required to independently validate these findings and determine the role of these SNPs in prognostic models.


Subject(s)
Genetic Predisposition to Disease/genetics , Neoplasm Recurrence, Local/genetics , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Prostatic Neoplasms/mortality , Aged , Disease Progression , Genome-Wide Association Study , Genotype , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging , Prognosis , Proportional Hazards Models , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...