Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2656, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302577

ABSTRACT

Goal-directed approaches to perception usually consider that distance perception is shaped by the body and its potential for interaction. Although this phenomenon has been extensively investigated in the field of perception, little is known about the effect of motor interactions on memory, and how they shape the global representation of large-scale spaces. To investigate this question, we designed an immersive virtual reality environment in which participants had to learn the positions of several items. Half of the participants had to physically (but virtually) grab the items with their hand and drop them at specified locations (active condition). The other half of the participants were simply shown the items which appeared at the specified position without interacting with them (passive condition). Half of the items used during learning were images of manipulable objects, and the other half were non manipulable objects. Participants were subsequently asked to draw a map of the virtual environment from memory, and to position all the items in it. Results show that active participants recalled the global shape of the spatial layout less precisely, and made more absolute distance errors than passive participants. Moreover, global scaling compression bias was higher for active participants than for passive participants. Interestingly, manipulable items showed a greater compression bias compared to non-manipulable items, yet they had no effect on correlation scores and absolute non-directional distance errors. These results are discussed according to grounded approaches of spatial cognition, emphasizing motor simulation as a possible mechanism for position retrieval from memory.


Subject(s)
Learning , Virtual Reality , Humans , Cognition , Mental Recall , Distance Perception , Spatial Memory , Space Perception
2.
Opt Lett ; 26(10): 666-8, 2001 May 15.
Article in English | MEDLINE | ID: mdl-18040413

ABSTRACT

Large Goos-Hänchen effects are isolated for reflection on a metallic grating. These shifts occur in the vicinity of Wood anomalies. Depending on the nature of the anomaly, these displacements are found to be either positive or, contrary to the usual GH effect, clearly negative. Those shifts, associated with forward and backward leaky surface waves, are as large as plus or minus tens of wavelengths for a classic metallic grating.

3.
Opt Lett ; 20(11): 1233-5, 1995 Jun 01.
Article in English | MEDLINE | ID: mdl-19859483

ABSTRACT

A macroscopic angular Goos-Hänchen effect at total reflection on curved interfaces is studied experimentally. The results are compared with the complex-angular-momentum model of quasi-critical scattering. An extremum in angular deflection, which has not yet been predicted by any theory other than exact Mie scattering computations, is identified at low size parameters.

4.
Phys Rev Lett ; 68(7): 931-933, 1992 Feb 17.
Article in English | MEDLINE | ID: mdl-10046035
SELECTION OF CITATIONS
SEARCH DETAIL
...