Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 35(5): 890-901, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587900

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a class of aliphatic manufactured compounds comprising fluoro-chemicals with varied functional groups and stable carbon-fluorine bonds. They are defined as "forever chemicals" due to their persistent and bioaccumulative character. These substances have been detected in various environmental samples, including water, air, soil, and human blood, posing significant health hazards. High-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) is typically employed for the analysis of PFASs. Negative chemical ionization (NCI) is generally coupled to gas chromatography (GC) and offers high selectivity and sensitivity for compounds containing electronegative atoms, such as PFASs. The liquid electron ionization (LEI) interface is an efficient mechanism developed to robustly couple a liquid flow rate from an LC system to an EI or a CI source. This interface has been successfully utilized for pesticide determination in UHPLC-LEI-CI in negative ion mode (NCI). This work aims to evaluate different parameters involved in the ionization of PFASs analyzed in LC-LEI-NCI and subsequently develop a method for their detection in real samples. The parameters considered for this study include (i) a comparison of different CI reagent gases (methane, isobutane, and argon); (ii) the use of acetonitrile as both the chromatographic solvent and CI reagent gas; (iii) the presence of water and formic acid as chromatographic mobile phase components; and (iv) the mobile phase flow rate. The optimal combination of these parameters led to promising results. Tentative fragmentation pathways of PFASs in NCI mode are proposed based on the dissociative electron capture mechanism.

2.
Biotechnol Appl Biochem ; 71(3): 670-680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444172

ABSTRACT

Piper longum L. (long pepper) is an economically and industrially important medicinal plant. However, the characterization of its volatiles has only been analyzed by gas chromatography-mass spectrometry (GC-MS). In the present study, precise characterization of P. longum fruit volatiles has been performed for the first time through advanced two-dimensional gas chromatography-time-of-flight spectrometry (GC×GC-TOFMS). A total of 146 constituents accounting for 93.79% were identified, of which 30 were reported for the first time. All these constituents were classified into alcohols (4.5%), alkanes (8.9%), alkenes (6.71%), esters (6.15%), ketones (0.58%), monoterpene hydrocarbons (1.64%), oxygenated monoterpenes (2.24%), sesquiterpene hydrocarbons (49.61%), oxygenated sesquiterpenes (13.03%), phenylpropanoid (0.23%), and diterpenes (0.2%). Among all the classes, sesquiterpene hydrocarbons were abundant, with germacrene-D (2.87% ± 0.01%) as the major one, followed by 8-heptadecene (2.69% ± 0.03%), ß-caryophyllene (2.43% ± 0.03%), n-heptadecane (2.4% ± 0.04%), n-pentadecane (2.11% ± 0.05%), and so forth. Further, 20 constituents were observed to be coeluted and separated precisely in the two-dimensional column. The investigation provides an extensive metabolite profiling of P. longum fruit volatiles, which could be helpful to improve its therapeutic potential.


Subject(s)
Fruit , Gas Chromatography-Mass Spectrometry , Piper , Piper/chemistry , Piper/metabolism , Fruit/chemistry , Fruit/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...