Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Nanoscale Adv ; 6(10): 2539-2568, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38752147

ABSTRACT

Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.

2.
Indian J Dermatol ; 69(1): 106, 2024.
Article in English | MEDLINE | ID: mdl-38572036

ABSTRACT

Background: Adverse drug reactions (ADRs) are major problems in the drug therapy. Cutaneous adverse drug reactions (CADRs) are the most common ADRs. The pattern of CADRs differs among various drugs. Aims: To record various morphological patterns of CADRs and their causal relationships among patients attending in a tertiary care centre. Materials and Methods: An observational, cross-sectional, clinical study was conducted for a duration of one and a half years in a tertiary care centre in eastern India. Patients presenting with suspected CADRs were included if drug identity could be ascertained. Clinical profiling and drug history were recorded, and causality assessment was carried out as per the Naranjo scale. Result: The commonest CADR in our study was fixed drug eruption (FDE) 48.61%, followed by SJS-TEN spectrum 16.66%, maculopapular rash 11.11% and so on. Severe cutaneous adverse drug reactions (SCARs) such as SJS, TEN, SJS-TEN Overlap, AGEP and DRESS accounted for 18 cases (25%). The most common culprit drugs were antimicrobials (54.16%), followed by nonsteroidal anti-inflammatory drugs (15.27%) and anticonvulsants (12.5%). Most of the CADRs were in probable category. Conclusion: The pattern of CADRs and the drugs causing them in our study population are similar to some previous studies but somewhat different from most of the previous Indian studies. The incidence of SCARs was significantly higher than in previous other studies in India and abroad.

3.
STAR Protoc ; 5(2): 103015, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613776

ABSTRACT

Bidirectional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are crucial for renewable energy transduction via electrolyzers and fuel cell. Here, we present a protocol for harnessing the cobalt complex for bidirectional O2/H2O transformation in neutral water via electrocatalysis/photocatalysis. We describe steps for monitoring ORR and OER in neutral aqueous solution, measuring O2 concentration, and identifying the probable catalytic mechanism for ORR and OER. We then detail procedures for examining catalyst behavior under photocatalytic conditions in neutral aqueous surroundings. For complete details on the use and execution of this protocol, please refer to Saini et al.1.

4.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38578920

ABSTRACT

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Light , Pyridines , Ruthenium , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Catalysis , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Green Light , HeLa Cells , Molecular Structure , Photochemical Processes , Pyridines/chemistry , Pyridines/pharmacology , Reactive Oxygen Species/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology
5.
Chem Commun (Camb) ; 60(31): 4148-4169, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38563372

ABSTRACT

Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H2 regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H2 storage, which include low-storage density and high cost of transportation apart from safety concerns. Global efforts have thus focussed on liquid organic hydrogen carriers (LOHCs), which have shown excellent potential for H2 storage while allowing safer large-scale transformation and easy on-site H2 generation. While water could be considered as the most convenient liquid inorganic hydrogen carrier (LIHC) on a long-term basis, the utilization of alcohols as LOHCs to generate on-demand H2 has tasted instant success. This has helped to draw a road-map of futuristic H2 storage and transportation. The current review brings to the fore the state-of-the-art developments in hydrogen generation from readily available, feed-agnostic bio-alcohols as LOHCs using molecular transition-metal catalysts.

6.
Chemistry ; 30(26): e202303411, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38441342

ABSTRACT

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range. These organic compounds exhibited four different stable redox states (dication, radical cation, neutral and radical anion), and all of them were characterized either by single crystal X-ray study and/or various spectroscopic studies. Three of the four redox states are stable to air and moisture. The availability of stable multiple redox states demonstrated promise towards their efficacy in the symmetric H-cell charge/discharge cycling. Among various redox states, the dication/neutral state works efficiently and continuously for 1500 cycles in 2e- charge/discharge process outside glovebox in commercially available DMF with minimum capacity loss (retaining nearly 90 % Coulombic efficiency). Surprisingly, the efficiency of the redox cycle was retained even if the system was exposed to air for 30 days when it slowly regenerated to the initial deep blue radical cation, and it exhibited another 100 charge/discharge cycles with a minimal capacity loss. Such a stable H-cell cycling ability is not well known among organic molecule-based systems.

7.
ACS Sens ; 9(1): 351-360, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38156608

ABSTRACT

The emergence of antimicrobial resistance (AMR) in pathogenic bacteria, expedited by the overuse and misuse of antibiotics, necessitates the development of a rapid and pan-territorially accessible diagnostic protocol for resistant bacterial infections, which would not only enable judicious prescription of drugs, leading to infection control but also augment AMR surveillance. In this study, we introduce for the first time a "turn-on" terbium (Tb3+) photoluminescence assay supported on a paper-based platform for rapid point-of-care (POC) detection of ß-lactamase (BL)-producing bacteria. We strategically conjugated biphenyl-4-carboxylic acid (BCA), a potent Tb3+ sensitizer, with cephalosporin to engineer a BL substrate CCS, where the energy transfer to terbium is arrested. However, BL, a major resistance element produced by bacteria resistant to ß-lactam antibiotics, triggers a spontaneous release of BCA, empowering terbium sensitization within a supramolecular scaffold supported on paper. The remarkable optical response facilitates quick assessment with a binary answer, and the time-gated signal acquisition ensues improved sensitivity with a detection limit as low as 0.1 mU/mL. Furthermore, to ensure accessibility, particularly in resource-limited areas, we have developed an in loco imaging device as an affordable alternative to high-end instruments. The integration of the assay with the device readily identified the BL-associated drug-resistant strains in the mimic urinary tract infection samples within 2 h, demonstrating its excellent potential for in-field translation. We believe that this rapid paper-based POC assay, coupled with the in loco device, can be deployed anywhere, especially in developing regions, and will enable extensive surveillance on antibiotic-resistant infections.


Subject(s)
Anti-Bacterial Agents , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Hydrogels , Luminescence , Terbium , Drug Resistance, Bacterial , Bacteria
8.
Dalton Trans ; 52(46): 17562-17572, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37965840

ABSTRACT

Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.


Subject(s)
Coordination Complexes , Vitamin B 6 , Humans , Pyridines/pharmacology , Pyridines/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Vitamins , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
9.
iScience ; 26(11): 108189, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37920669

ABSTRACT

The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-µ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.

10.
J Phys Chem B ; 127(48): 10266-10278, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37988143

ABSTRACT

Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Humans , Curcumin/pharmacology , Density Functional Theory , Zinc/chemistry , Caspase 9/metabolism , Molecular Docking Simulation , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry
11.
RSC Adv ; 13(44): 31101-31111, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37881761

ABSTRACT

Spinel materials have demonstrated diverse applications in various fields, especially in the energy sector. Since the pure spinel structure has the limitations of poor inherent activity and low conductivity, defect engineering through octahedral B-site modulation is expected to enhance various properties. Here in this work, we have synthesized ZnGa2-xAlxO4 (x = 0 ≤ 2) spinel and moved from one terminal (ZnGa2O4) to the other (ZnAl2O4) by varying the Ga/Al ratio using solvent-free solid-state reaction. Dopant and rare earth element-free (RE) ZnGa2O4 spinel showed excellent blue luminescence with photoluminescent quantum yields (PLQY) of 13% while exhibiting persistent light emission close to 60 min. The Al3+ incorporation at Ga3+ site doesn't yield any improvement in persistent luminescence lifetime owing to quenching of shallow traps as suggested by thermoluminescence (TL) studies. Moreover our materials have demonstrated bifunctional electrocatalytic activity towards both oxygen evolution (OER) and hydrogen evolution reaction (HER) which has never been reported for ZnGa2-xAlxO4. X-ray photoelectron spectroscopy (XPS) and positron annihilation lifetime spectroscopy (PALS) suggested that mixed Al/Ga-containing spinels possessed enhanced oxygen vacancies/defects. This makes them better electrocatalyst towards OER and HER compare to ZnGa2O4 and ZnAl2O4. The ZnGa1.75Al0.25O4 composition by virtue of enhanced oxygen vacancies and less charge transfer resistance (47.3 ohms) demonstrated best electrocatalytic activity for OER compared to the other synthesized catalysts at the same applied potential (1.6 V). On the other hand, the ZnGa1Al1O4 composition demonstrated excellent faradaic efficiency of ∼ 90% towards HER. From this work we can achieve multifunctional applications towards optoelectronics and electrocatalysis just by modulating Al/Ga ratio in ZnGa2-xAlxO4.

12.
Nat Commun ; 14(1): 6859, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891216

ABSTRACT

Facile conversion of CO2 to commercially viable carbon feedstocks offer a unique way to adopt a net-zero carbon scenario. Synthetic CO2-reducing catalysts have rarely exhibited energy-efficient and selective CO2 conversion. Here, the carbon monoxide dehydrogenase (CODH) enzyme blueprint is imitated by a molecular copper complex coordinated by redox-active ligands. This strategy has unveiled one of the rarest examples of synthetic molecular complex-driven reversible CO2 reduction/CO oxidation catalysis under regulated conditions, a hallmark of natural enzymes. The inclusion of a proton-exchanging amine groups in the periphery of the copper complex provides the leeway to modulate the biases of catalysts toward CO2 reduction and CO oxidation in organic and aqueous media. The detailed spectroelectrochemical analysis confirms the synchronous participation of copper and redox-active ligands along with the peripheral amines during this energy-efficient CO2 reduction/CO oxidation. This finding can be vital in abating the carbon footprint-free in multiple industrial processes.

13.
Inorg Chem ; 62(43): 17894-17904, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37844287

ABSTRACT

This study explores the structure and stability of partly disordered sulfur-substituted Ni5.74InSe2 (I4/mmm, a = 3.6766(1) Å, c = 18.8178(10) Å, Z = 2). The structure of Ni7-δInSe2-xSx (x = 0.2, 0.36, 0.66, 0.80, 0.94) compounds is isotypic to their parent Ni5.74InSe2 and can be viewed as alternating heterometallic Cu3Au-type ∞2[Ni3In] slabs and defective Cu2Sb-type ∞2[Ni4-δ(Se/S)2] slabs along the [001]-axis. Similar to the parent Se-compound, the Ni-Ch (Ch = chalcogen) fragment is non-stoichiometric and possesses a partially occupied Ni-site. It was observed that with sulfur insertion at the selenium site of Ni5.74InSe2, the interatomic distance between the partially occupied nickel and mixed (S/Se) sites decreases from ∼2.24 to ∼1.95 Å, and the occupancy of the disordered nickel site simultaneously increases. The limiting composition Ni6.06InSe0.67S1.33 (x = 1.33, δ = 0.94) is formed in the sulfur-rich region. Its average structure resembles the Ni6SnS2-type and has a similar motif to Ni5.74InSe2; the only difference is that Cu3Au-type ∞2[Ni3In] alternates with two types of Ni-Ch fragments (Cu2Sb or Li2O type units). By using first-principles electronic structure calculations, we explained the presence of partially disordered nickel sites in the Ni-Ch fragment and rationalized why the nickel site occupancy increases with sulfur insertion.

14.
Magnetochemistry ; 9(5)2023 May.
Article in English | MEDLINE | ID: mdl-37476293

ABSTRACT

The accurate analysis of continuous-wave electron spin resonance (cw ESR) spectra of biological or organic free-radicals and paramagnetic metal complexes is key to understanding their structure-function relationships and electrochemical properties. The current methods of analysis based on simulations often fail to extract the spectral information accurately. In addition, such analyses are highly sensitive to spectral resolution and artifacts, users' defined input parameters and spectral complexity. We introduce a simulation-independent spectral analysis approach that enables broader application of ESR. We use a wavelet packet transform-based method for extracting g values and hyperfine (A) constants directly from cw ESR spectra. We show that our method overcomes the challenges associated with simulation-based methods for analyzing poorly/partially resolved and unresolved spectra, which is common in most cases. The accuracy and consistency of the method are demonstrated on a series of experimental spectra of organic radicals and copper-nitrogen complexes. We showed that for a two-component system, the method identifies their individual spectral features even at a relative concentration of 5% for the minor component.

15.
STAR Protoc ; 4(3): 102448, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37454297

ABSTRACT

The presence of efficient energy storage and conversion technologies is essential for the future energy infrastructure. Here, we describe crafting a heterostructure composed of a suitably interlinked CeO2 and polycrystalline Bi2O3 dopant prepared on a reduced graphene oxide (Ce_Bi2O3@rGO) surface. This material exhibits exceptional electrocatalytic hydrogen and oxygen evolution reaction in alkaline water (pH∼14.0) to trigger the full water-splitting cycle as a Janus catalyst. The stepwise catalyst preparation and electrochemical cell assembly for simultaneous hydrogen and oxygen evolution have been narrated. For complete details on the use and execution of this protocol, please refer to Aziz et al. (2022).1.


Subject(s)
Hydrogen , Oxygen , Cell Cycle , Water
16.
Chem Commun (Camb) ; 59(47): 7243-7246, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37222459

ABSTRACT

The strategic inclusion of nucleic bases adenine, cytosine, and thymine, in the form of outer coordination sphere, positively impacts the electro- and photocatalytic H2 production by cobaloxime cores. These cobaloxime derivatives showcased their optimal H2 production in acidic media due to specific protonation of adenine and cytosine below pH 5.0.


Subject(s)
Organometallic Compounds , Water , Thymine/chemistry , Adenine/chemistry , Cytosine/chemistry
17.
Int J Biol Macromol ; 242(Pt 2): 124774, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37196727

ABSTRACT

The strategic utilization of hazardous particulate waste in eliminating environmental pollution is an important research hotspot. Herein, abundantly available hazardous solid collagenic waste of leather industry is converted into stable hybrid nanobiocomposite (HNP@SWDC) comprising magnetic hematite nanoparticles (HNP) and solid waste derived collagen (SWDC) via co-precipitation method. The structural, spectroscopic, surface, thermal, and magnetic properties; fluorescence quenching; dye selectivity; and adsorption are explored via microstructural analyzes of HNP@SWDC and dye adsorbed-HNP@SWDC using 1H nuclear magnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared (FTIR), X-ray photoelectron, and fluorescence spectroscopies; thermogravimetry; field-emission scanning electron microscopy; and vibrating-sample magnetometry (VSM). The intimate interaction of SWDC with HNP and elevated magnetic properties of HNP@SWDC are apprehended via amide-imidol tautomerism associated nonconventional hydrogen bondings, disappearance of goethite specific -OH def. in HNP@SWDC, and VSM. The as-fabricated reusable HNP@SWDC is employed for removing methylene blue (MB) and rhodamine B (RhB). Chemisorption of RhB/MB in HNP@SWDC via ionic, electrostatic, and hydrogen bonding interactions alongside dimerization of dyes are realized by ultraviolet-visible, FTIR, and fluorescence studies; pseudosecond order fitting; and activation energies. The adsorption capacity = 46.98-56.14/22.89-27.57 mg g-1 for RhB/MB is noted using 0.01 g HNP@SWDC within 5-20 ppm dyes and 288-318 K.


Subject(s)
Solid Waste , Water Pollutants, Chemical , Adsorption , Coloring Agents/chemistry , Magnetic Iron Oxide Nanoparticles , Collagen/chemistry , Water Pollutants, Chemical/chemistry
18.
Amino Acids ; 55(7): 853-867, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37248437

ABSTRACT

Antibacterial peptides can be a potential game changer in the fight against antibiotic resistance. In order for these peptides to become successful antibiotic alternatives, it is essential that they possess high efficacy in addition to just being antibacterial. In this study, we have developed a two-level SVM-based binary classification approach to predict the antibacterial activity of a given peptide (model 1) and thereafter classify its antibacterial efficacy as high/low (model 2) with respect to minimum inhibitory concentration (MIC) values against Staphylococcus aureus, one of the most common pathogens. Based on charge and hydrophobicity of amino acids, we developed a sequence-based combined charge and hydrophobicity-guided triad (CHT) as a new method for obtaining features of any peptide. Model 1 with a combination of CHT and amino acid composition (AAC) as the feature representation method resulted in the highest accuracy of 96.7%. Model 2 with CHT as the feature representation method yielded the highest accuracy of 70.9%. Thus, CHT is found to be a potential feature representation method for classifying antibacterial peptides based on both activity and efficacy. Furthermore, we have also used an explainable machine learning algorithm to extract various insights from these models. These insights are found to be in excellent agreement with experimental findings reported in the literature, thus enhancing the dependability of the proposed models.


Subject(s)
Anti-Bacterial Agents , Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Staphylococcus aureus , Amino Acids/chemistry , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions
19.
ChemSusChem ; 16(12): e202202201, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36881013

ABSTRACT

Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.


Subject(s)
Transition Elements , Metals , Oxidation-Reduction , Catalysis , Oxidants
20.
Chembiochem ; 24(10): e202300033, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36763497

ABSTRACT

Four new CoII complexes, [Co(bpy)2 (acac)]Cl (1), [Co(phen)2 (acac)]Cl (2), [Co(bpy)2 (cur)]Cl (3), [Co(phen)2 (cur)]Cl (4), where bpy=2,2'-bipyridine (1 and 3), phen=1,10-phenanthroline (2 and 4), acac=acetylacetonate (1 and 2), cur=curcumin monoanion (3 and 4) have been designed, synthesized and fully characterized. The X-ray crystal structures of 1 and 2 indicated that the CoN4 O2 core has a distorted octahedral geometry. The photoactivity of these complexes was tuned by varying the π conjugation in the ligands. Curcumin complexes 3 and 4 had an intense absorption band near 435 nm, which made them useful as visible-light photodynamic therapy agents; they also showed fluorescence with λem ≈565 nm. This fluorescence was useful for studying their intracellular uptake and localization in MCF-7 breast cancer cells. The acetylacetonate complexes (1 and 2) were used as control complexes to understand the role of curcumin. The white-light-triggered anticancer profiles of the cytosol targeting complexes 3 and 4 were investigated in detail. These non-dark toxic complexes displayed significant apoptotic photo-cytotoxicity (under visible light) against MCF-7 cells through ROS generation. The control complexes 1 and 2 did not induce significant cell death in the light or dark. Interestingly, 1-4 produced a remarkable antibacterial response upon light exposure. Overall, the reported results here can increase the boundary of the CoII -based anticancer and antibacterial drug development.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Humans , Curcumin/pharmacology , Curcumin/chemistry , Hydroxybutyrates , Pentanones , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...