Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171668, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38485011

ABSTRACT

The increasing amount of waste globally has led to a rise in the use of landfills, causing more pollutants to be released through landfill leachate. This leachate is a harmful mix formed from various types of waste at a specific site, and careful disposal is crucial to prevent harm to the environment. Understanding the physical and chemical properties, age differences, and types of landfills is essential to grasp how landfill leachate behaves in the environment. The use of Sustainable Development Goals (SDGs) in managing leachate is noticeable, as applying these goals directly is crucial in reducing the negative effects of landfill leachate. This detailed review explores the origin of landfill leachate, its characteristics, global classification by age, composition analysis, consequences of mismanagement, and the important role of SDGs in achieving sustainable landfill leachate management. The aim is to provide a perspective on the various aspects of landfill leachate, covering its origin, key features, global distribution, environmental impacts from poor management, and importance of SDGs which can guide for sustainable mitigation within a concise framework.

2.
Environ Monit Assess ; 196(2): 180, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244090

ABSTRACT

Water pollution stands as a critical worldwide concern, bearing extensive repercussions that extend to human health and the natural ecosystem. The sources of water pollution can be diverse, arising from natural processes and human activities and the pollutants may range from chemical and biological agents to physical and radiological contaminants. The contamination of water disrupts the natural functioning of the system, leading to both immediate and prolonged health problems. Various technologies and procedures, ranging from conventional to advanced, have been developed to eliminate water impurities, with the choice depending on the type and level of contamination. Assessing risks is a crucial element in guaranteeing the safety of drinking water. Till now, research is continuing the removal of contaminates for the sake of supplying safe drinking water. The study examined physical, inorganic, organic, biological and radiological contaminants in drinking water. It looked at where these contaminants come from, their characteristics, the impact they have and successful methods used in real-world situations to clean the contaminated water. Risk assessment methodologies associated with the use of unsafe drinking water as future directives are also taken into consideration in the present study for the benefit of public concern. The manuscript introduces a comprehensive study on water pollution, focusing on assessing and mitigating risks associated with physical, inorganic, organic, biological and radiological contaminants in drinking water, with a novel emphasis on future directives and sustainable solutions for public safety.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Ecosystem , Environmental Monitoring , Water Supply , Risk Assessment , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 30(41): 93363-93387, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548785

ABSTRACT

Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.


Subject(s)
COVID-19 , Humans , Carbon Dioxide , Masks , Pandemics , Plastics , Microplastics
4.
Waste Manag ; 164: 127-142, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37054538

ABSTRACT

Since the enactment of the Clean Water Act (1972), which was supplemented by increased accountability under Resource Conservation and Recovery Act (RCRA) Subtitle D (1991) and the Clean Air Act Amendments (1996), landfills have indeed been widely used all around the world for treating various wastes. The landfill's biological and biogeochemical processes are believed to be originated about 2 to 4 decades ago. Scopus and web of Science based bibliometric study reveals that there are few papers available in scientific domain. Further, till today not a single paper demonstrated the detailed landfills heterogenicity, chemistry and microbiological processes and their associated dynamics in a combined approach. Accordingly, the paper addresses the recent applications of cutting-edge biogeochemical and biological methods adopted by different countries to sketch an emerging perspective of landfill biological and biogeochemical reactions and dynamics. Additionally, the significance of several regulatory factors controlling the landfill's biogeochemical and biological processes is highlighted. Finally, this article emphasizes the future opportunities for integrating advanced techniques to explain landfill chemistry explicitly. In conclusion, this paper will provide a comprehensive vision of the diverse dimensions of landfill biological and biogeochemical reactions and dynamics to the scientific world and policymakers.


Subject(s)
Refuse Disposal , Refuse Disposal/methods , Waste Disposal Facilities , Water
5.
Sci Total Environ ; 881: 163433, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37061055

ABSTRACT

Plastic waste is increasing rapidly due to urbanisation and globalization. In recent decades, plastic usage increased, and the upward trend is expected to continue. Only 9% of the 7 billion tonnes of plastic produced were recycled in India until 2022. India generates 1.5 million tonnes of plastic waste (PW) every year and ranks among top ten plastic producer countries. Large amount of waste plastics could harm environment and human health. The current manuscript provides a comprehensive approach for mechanical and chemical recycling methods. The technical facets of mechanical recycling relating to collection, sorting, grading, and general management to create plastic products with additional value have been elaborated in this study. Another sustainable methods aligned with the chemical recycling using pyrolysis, gasification, hydrocracking, IH2 (Integrated Hydropyrolysis 2), and KDV (Katalytische Drucklose Verolung) techniques have also been highlighted with the critical process parameters for the sustainable conversion of plastic waste to valuable products. The review also adheres to less carbon-intensive plastic degrading strategies that take a biomimetic approach using the microorganism based biodegradation. The informative aspects covering the limitations and effectiveness of all PW technologies and its applications towards plastic waste management (PWM) are also emphasized. The existing practices in PW policy guidelines along with its economic and ecological aspects have also been discussed.

6.
Sci Total Environ ; 859(Pt 2): 160391, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36423849

ABSTRACT

E-waste management has become a global concern because of the enormous rise in the rate of end-of-life electrical and electronic equipment's (EEEs). Disposal of waste EEE directly into the environment leads to adverse effects on the environment as well as on human health. For the management of E-waste, numerous studies have been carried out for extracting metals (base, precious, and rare earth) following pyrometallurgy, hydrometallurgy, and biometallurgy. Irrespective of the advantages of these processes, certain limitations still exist with each of these options in terms of their adoption as treatment techniques. Several journal publications regarding the different processes have been made which aids in future research in the field of E-waste management. This review provides a comprehensive summary of the various metal recovery processes (pyrometallurgy, hydrometallurgy, and biometallurgy) from E-waste, along with their advantages and limitations. A bibliometric study based on the published articles using different keywords in Scopus has been provided for a complete idea about E-waste with green technology perspective like bioleaching, biosorption, etc. The present study also focussed on the circular economic approach towards sustainable E-waste management along with its socio-economic aspects and the economic growth of the country. The present study would provide valuable knowledge in understanding E-waste and its different treatment processes to the students, researchers, industrialists, and policymakers of the country.


Subject(s)
Electronic Waste , Waste Management , Humans , Electronic Waste/analysis , Recycling/methods , Metals , Electronics
7.
Sci Total Environ ; 848: 157709, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35908693

ABSTRACT

Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.


Subject(s)
Biofuels , Wastewater , Biotechnology , Filtration , Water
8.
Environ Pollut ; 305: 119248, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35395353

ABSTRACT

The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.


Subject(s)
Environmental Pollutants , Metals, Heavy , Bioaccumulation , Biodegradation, Environmental , Environmental Pollutants/metabolism , Humans , Metals, Heavy/analysis , Plants/metabolism , Solid Waste/analysis
10.
Chemosphere ; 288(Pt 1): 132386, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34606888

ABSTRACT

The rapid growth in population has increased the demand for potable water. Available technologies for its generation are the desalination of sea water through reverse osmosis, electrodialysis etc., which are energy and cost intensive. In this context, microbial desalination cell (MDC) presents a low-cost and sustainable option which can simultaneously treat wastewater, desalinate saline water, produce electrical energy and recover nutrients from wastewater. This review paper is focussed on presenting a detailed analysis of MDCs starting from the principle of operation, microbial community analysis, basic architecture, evolution in design, operational challenges, effect of process parameters, scale-up studies, application in multiple arenas and future prospects. After thorough review, it can be inferred that MDCs can be used as a stand-alone option or pre-treatment step for conventional desalination techniques without the application of external energy. MDCs have been used in multiple applications ranging from desalination, remediation of contaminated water, recovery of energy and nutrients from wastewater, softening of hardwater, biohydrogen production to degradation of waste engine oil. Although, MDCs have been used for multiple applications, still a number of operational challenges have been reported viz., interference of co-existing ions during desalination, membrane fouling, pH imbalance and limited potential of exoelectrogens. However, the re-circulation of anolytes with electrodialysis chamber has led to the maintenance of optimal pH for favourable microbial growth leading to improvement in the overall performance of MDCs. In future, genetic engineering may be used for improving the electrogenic activity of microbial community, next generation materials may be used as anode and cathode, varied sources of wastewater may be explored as anolytes, life cycle analysis and exergy analysis may be carried out to study the impact on environment and detailed pilot scale studies have to be carried out for assessing the feasibility of operation at large scale.


Subject(s)
Bioelectric Energy Sources , Water Purification , Electricity , Electrodes , Salinity , Seawater , Wastewater
11.
Chemosphere ; 285: 131245, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34246094

ABSTRACT

Rapid urbanization and industrialization have inextricably linked to water consumption and wastewater generation. Mining resources from industrial wastewater has proved to be an excellent source of secondary raw materials i.e., proficient for providing economic and financial benefits, clean and sustainable resilient environment, and achieving sustainable development goals (SDGs). Treatment of industrial wastewater for reusable resources has become a tedious task for decision-makers due to several bottlenecks and barriers, such as inefficient treatment options, high-cost expenditure, poor infrastructure, lack of financial support, and technical know-how. Most of the existing methods are conventional and fails to provide an economic benefit to the industries and have certain disadvantages. Also, the untreated industrial wastewater is discharged into the open drains, lakes, and rivers that lead to environmental pollution and severe health hazards. This paper has consolidated information about the current trends, opportunities, bottlenecks, and best practices associated with wastewater treatment and scope for the advancement in the existing technologies. Along with the efficient resource recovery, the wastewater could be ideally explored in the development of value-added materials, energy, and product recovery. The concepts, such as the circular economy (CE), partitions-release-recover (PRR), and transforming wastewater into bio factory are anticipated to be more convenient options to tackle the industrial wastewater menace.


Subject(s)
Wastewater , Water Purification , Industry , Rivers , Sustainable Development , Wastewater/analysis
12.
Waste Manag ; 125: 163-171, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33706255

ABSTRACT

Nowadays, old electrical and electronic gadgets are being replaced constantly by newer versions resulting in huge amounts of waste electronic and electrical products that are collectively termed e-waste. It is estimated that 95% of e-waste recycling in India is done by the informal sector at the cost of their health and the environment. Very little data and no descriptions of recycling processes in the formal sector in India were available in the literature. The objective of this study was to evaluate the status of formal and informal e-waste recycling facilities in India. Seven authorized e-waste handling facilities in West Bengal, Maharashtra, Karnataka and Delhi were visited and most were involved in dismantling work only. In all cases, metals, plastic and glass are recovered from e-waste in compliance with environmental legislation. Challenges faced by the formal sector include lack of awareness among people and very few collection centers throughout the country. Quantification of e-waste generated in India was difficult as imported second-hand electrical and electronic gadgets cannot be separated for electronic waste. There is no mechanism for collecting data regarding e-waste generation in the states or at the Central government level. It is likely that published estimates are based on the indigenous production and import of electrical and electronic goods. The current installed e-waste handling capacity of 11 × 105 tons/year of e-waste in the country is woefully inadequate and needs to be enhanced as the minimum requirement is estimated to be 22 × 105 tons/year of e-waste.


Subject(s)
Electronic Waste , Electronic Waste/analysis , Humans , India , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...