Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875502

ABSTRACT

Herein, we report a direct meso-methyl amination of BODIPY dyes by C(sp3)-N(sp3) bond formation using PIDA as an oxidant with a wide range of aliphatic secondary amines. This metal free cross dehydrogenative coupling reaction is regiospecific at the meso-methyl position of BODIPY in the presence of C1, C3, C5, and C7 methyl groups. Detailed nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray crystallographic studies were performed to establish the reaction mechanism and the regiospecificity of the reaction. Finally, the photophysical and electrochemical properties of the newly synthesized dyes were evaluated and rationalized.

2.
Int J Biochem Cell Biol ; 161: 106443, 2023 08.
Article in English | MEDLINE | ID: mdl-37392863

ABSTRACT

Poly (ADPRibose) Polymerase inhibitor (PARPi) are clinically approved for the treatment of BRCA-mutated hereditary breast and ovarian cancers with homologous recombination (HR) deficiency, based on synthetic lethality concept. However, ∼90% of breast cancers are BRCA-wild type; they repair PARPi mediated damage through HR, leading to intrinsic de novo resistance. Hence, there is an unmet need of exploring novel targets in HR-proficient aggressive breast cancers for PARPi treatment. RECQL5 physically interacts and disrupts RAD51 from pre-synaptic filaments, aiding HR resolution, replication fork protection and preventing illegitimate recombination. In the current investigation, we show that targeted inhibition of HR by stabilization of RAD51-RECQL5 complex by a pharmacological inhibitor of RECQL5 (4a; 1,3,4-oxadiazole derivative) in the presence of PARPi [talazoparib (BMN673)] leads to abolition of functional HR with uncontrolled activation of NHEJ repair. This was assessed by GFP based NHEJ reporter assay, KU80 recruitment and in vitro NHEJ based plasmid ligation assay. Concomitant treatment with talazoparib and 4a generates copious amounts of replication stress, prolonged cell cycle arrest, extensive double strand breaks (DSBs) and mitotic catastrophe, leading to sensitization of HR-proficient breast cancers. Suppression of NHEJ activity abolishes 4a-mediated sensitization of breast cancers to PARPi treatment. Imperatively, 4a was ineffective against normal mammary epithelial cells, which expresses low RECQL5 vis-à-vis breast cancer cells. Moreover, functional inhibition of RECQL5 suppresses metastatic potential of breast cancer cells in response to PARPi. Together, we identified RECQL5 as a novel pharmacological target for expanding PARPi based treatment horizon for HR-proficient cancers.


Subject(s)
Breast Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA End-Joining Repair , Breast/pathology , DNA Replication , Cell Line, Tumor , Homologous Recombination , RecQ Helicases/genetics
3.
J Med Chem ; 64(3): 1524-1544, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33529023

ABSTRACT

Clinical and preclinical data reveal that RECQL5 protein overexpression in breast cancer was strongly correlated with poor prognosis, survival, and therapeutic resistance. In the current investigation, we report design, synthesis, and specificity of a small molecule, 4a, which can preferentially kill RECQL5-expressing breast cancers but not RECQL5 knockout. Our stringent analysis showed that compound 4a specifically sensitizes RECQL5-expressing cancers, while it did not have any effect on other members of DNA RECQL-helicases. Integrated approaches of organic synthesis, biochemical, in silico molecular simulation, knockouts, functional mutation, and rescue experiments showed that 4a potently inhibits RECQL5-helicase activity and stabilizes RECQL5-RAD51 physical interaction, leading to impaired HRR and preferential killing of RECQL5-expressing breast cancer. Moreover, 4a treatment led to the efficient sensitization of cisplatin-resistant breast cancers but not normal mammary epithelial cells. Pharmacologically, compound 4a was orally effective in reducing the growth of RECQL5-expressing breast tumors (human xenograft) in NUDE-mice with no appreciable toxicity to the vital organs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , RecQ Helicases/drug effects , Administration, Oral , Animals , Antineoplastic Agents/toxicity , Cell Cycle/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Computer Simulation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Models, Molecular , RecQ Helicases/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...