Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 251: 126309, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573902

ABSTRACT

In the present study, bacterial nanocellulose/graphene oxide nano-biocomposites (BNC-GO-NBCs) were fabricated by Komagataeibacter saccharivorans NUWB1 using an in-situ method involving three time-dependent approaches. Physicochemical studies showed that the chosen dried BNC-GO-NBC possessed a three-dimensional interconnected porous structure of BNC with GO layers embedded within the BNC fibrils. BNC-GO-NBC had a crystallinity index of 74.21 %, higher thermostability up to 380 °C and could withstand a tensile load of 84.72 MPa. N2 adsorption-desorption isotherm of the BNC-GO-NBC was found to be of type IV, suggesting a mesoporous type structure with a total pore volume and surface area of 6.232e-04 cc g-1 and 10.498 m2. BNC-GO-NBC exhibited remarkable adsorption capacity for two cationic dyes, Rhodamine B (RhB) and Acridine Orange (AO), and the adsorption data conformed well to the Langmuir isotherm (R2 = 0.99) and pseudo-second-order model. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. Additionally, the BNC-GO-NBC displayed the potential for regeneration, with the ability to be recycled up to five times. Further, the antibacterial activity, cell cytotoxicity and oxidative stress assays of the BNC-GO-NBC revealed its non-cytotoxic nature. The findings of the present investigation evidently suggest the potentiality of BNC-GO-NBC in the application of dye adsorption and other environmental applications.

2.
Int J Biol Macromol ; 242(Pt 2): 125020, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37217054

ABSTRACT

The current scenario of environmental pollution caused by non-biodegradable plastic and depleting non-renewable resources has called upon the need for biodegradable bioplastic production from renewable resources. Starch bioplastics production from underutilized sources is a viable option for packaging materials that are non-toxic, environmentally benign, and easily biodegradable under disposed conditions. Pristine bioplastic production results in some undesirable qualities and hence requires further modification in order to elevate its potential applicability in real-world scenarios. In this work, yam starch was extracted from a local variety of yams through an eco-friendly and energy-efficient process which was further utilized for bioplastic production. The produced virgin bioplastic was subjected to physical modification through the introduction of plasticizers such as glycerol, while citric acid (CA) was employed as modifier in order to produce the desired starch bioplastic film. The different compositions of starch bioplastics were analyzed for their mechanical properties and maximum tensile strength of 24.60 MPa was observed as the best possible experimental result. The biodegradability feature was further highlighted through soil burial test. Apart from their general function of preservation and protection, the produced bioplastic can be employed for pH-sensitive food spoilage detection through the minute introduction of plant-derived anthocyanin extract into it. The produced pH-sensitive bioplastic film showed distinct changes in color upon an extreme change in the pH value and hence has potential to be used as a smart food packaging material.


Subject(s)
Dioscorea , Starch , Animals , Starch/chemistry , Anthocyanins , Citric Acid/chemistry , Plasticizers
3.
Mar Pollut Bull ; 186: 114488, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36563603

ABSTRACT

In this novel study, an attempt has been made to prepare porous crosslinked poly(ethylene-co-vinyl acetate) polymer (C-EVA). The porous C-EVA was prepared by grafting of maleic anhydride and cetyl alcohol onto the polymer backbone with addition of NaCl as porogen in the brabender mixture at 120 °C and 80 rpm. This was followed by leaching of NaCl with water extraction to generate a highly porous polymer structure which was evident from its SEM micrographs. The polymer was found to have excellent swelling capacity in various oils and organic solvents and showed good selective absorption capacity. The reusability of the synthesized polymer was studied and it was found that it could be reused for more than 30 absorption desorption cycles without undergoing much change in its absorption capacity. The cross-linked polymeric composite was further characterized by FTIR, TGA, XRD, and SEM.


Subject(s)
Sodium Chloride , Wastewater , Porosity , Solvents/chemistry , Oils/chemistry , Polymers
4.
3 Biotech ; 12(1): 13, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34966636

ABSTRACT

In the present study, the efficiency of four different strains of Pseudomonas aeruginosa and their biosurfactants in the bioremediation process were investigated. The strains were found to be capable of metabolizing a wide range of hydrocarbons (HCs) with preference for high molecular weight aliphatic (ALP) over aromatic (ARO) compounds. After treating with individual bacteria and 11 different consortia, the residual crude oils were quantified and qualitatively analyzed. The bacterial strains degraded ALP, ARO, and nitrogen, sulphur, oxygen (NSO) containing fractions of the crude oil by 73-67.5, 31.8-12.3 and 14.7-7.3%, respectively. Additionally, the viscosity of the residual crude oil reduced from 48.7 to 34.6-39 mPa s. Further, consortium designated as 7 and 11 improved the degradation of ALP, ARO, and NSO HCs portions by 80.4-78.6, 42.7-42.4 and 21.6-19.2%, respectively. Moreover, addition of biosurfactant further increased the degradation performance of consortia by 81.6-80.7, 43.8-42.6 and 22.5-20.7%, respectively. Gas chromatographic analysis confirmed the ability of the individual strains and their consortium to degrade various fractions of crude oil. Experiments with biosurfactants revealed that polyaromatic hydrocarbons (PAHs) are more soluble in the presence of biosurfactants. Phenanthrene had the highest solubility among the tested PAHs, which further increased as biosurfactant doses raised above their respective critical micelle concentrations (CMC). Furthermore, biosurfactants were able to recover 73.5-63.4% of residual oil from the sludge within their respective CMCs. Hence, selected surfactant-producing bacteria and their consortium could be useful in developing a greener and eco-sustainable way for removing crude oil pollutants from soil.

5.
Biomed Mater ; 9(2): 025006, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24495981

ABSTRACT

Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.


Subject(s)
Biocompatible Materials/chemistry , Nanocomposites/chemistry , Prostheses and Implants , Animals , Anti-Infective Agents/chemistry , Candida albicans , Epoxy Compounds/chemistry , Escherichia coli , Male , Materials Testing , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mycobacterium smegmatis , Polymers/chemistry , Rats , Rats, Wistar , Regeneration , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...