Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Cell Stem Cell ; 30(11): 1503-1519.e8, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37863054

ABSTRACT

Somatic mutations accumulate in all cells with age and can confer a selective advantage, leading to clonal expansion over time. In hematopoietic cells, mutations in a subset of genes regulating DNA repair or epigenetics frequently lead to clonal hematopoiesis (CH). Here, we describe the context and mechanisms that lead to enrichment of hematopoietic stem cells (HSCs) with mutations in SRCAP, which encodes a chromatin remodeler that also influences DNA repair. We show that SRCAP mutations confer a selective advantage in human cells and in mice upon treatment with the anthracycline-class chemotherapeutic doxorubicin and bone marrow transplantation. Furthermore, Srcap mutations lead to a lymphoid-biased expansion, driven by loss of SRCAP-regulated H2A.Z deposition and increased DNA repair. Altogether, we demonstrate that SRCAP operates at the intersection of multiple pathways in stem and progenitor cells, offering a new perspective on the functional impact of genetic variants that promote stem cell competition in the hematopoietic system.


Subject(s)
Clonal Hematopoiesis , Hematopoiesis , Animals , Humans , Mice , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , DNA Repair/genetics , Epigenesis, Genetic , Hematopoiesis/genetics , Mutation/genetics
3.
J Clin Invest ; 132(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35763353

ABSTRACT

Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early-phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR/Cas9 screens implicated decreased translation initiation as protective following GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to the effects of GSPT1 degradation. We defined 2 Crbn amino acids that prevent Gspt1 degradation in mice, generated a knockin mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant acute myeloid leukemia.


Subject(s)
Leukemia , Peptide Termination Factors , Animals , Cell Death , Hematopoietic Stem Cells/metabolism , Mice , Peptide Termination Factors/chemistry , Peptide Termination Factors/metabolism , Proteolysis
4.
Cancers (Basel) ; 14(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35053433

ABSTRACT

BACKGROUND: Somatic mutations, copy-number variations, and genome instability of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. MATERIAL: To determine the potential roles of mtDNA alterations in sporadic PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of seventy-seven human tumors, using next-generation sequencing, and compared the results with normal adrenal medulla tissues. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene and protein expression. RESULTS: Our results revealed that 53.2% of the tumors harbor a mutation in at least one of the targeted susceptibility genes, and 16.9% harbor complementary mitochondrial mutations. More than 50% of the mitochondrial mutations were novel and predicted pathogenic, affecting mitochondrial oxidative phosphorylation. Large deletions were found in 26% of tumors, and depletion of mtDNA occurred in more than 87% of PCCs/PGLs. The reduction of the mitochondrial number was accompanied by a reduced expression of the regulators that promote mitochondrial biogenesis (PCG1α, NRF1, and TFAM). Further, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. CONCLUSION: The pathogenic role of these finding remains to be shown, but we suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis.

5.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008989

ABSTRACT

BACKGROUND: Enzymes of tricarboxylic acid (TCA) have recently been recognized as tumor suppressors. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) cause pheochromocytomas and paragangliomas (PCCs/PGLs) and predispose patients to malignant disease with poor prognosis. METHODS: Using the human pheochromocytoma cell line (hPheo1), we knocked down SDHB gene expression using CRISPR-cas9 technology. RESULTS: Microarray gene expression analysis showed that >500 differentially expressed gene targets, about 54%, were upregulated in response to SDHB knock down. Notably, genes involved in glycolysis, hypoxia, cell proliferation, and cell differentiation were up regulated, whereas genes involved in oxidative phosphorylation (OXPHOS) were downregulated. In vitro studies show that hPheo1 proliferation is not affected negatively and the cells that survive by shifting their metabolism to the use of glutamine as an alternative energy source and promote OXPHOS activity. Knock down of SDHB expression results in a significant increase in GLUD1 expression in hPheo1 cells cultured as monolayer or as 3D culture. Analysis of TCGA data confirms the enhancement of GLUD1 in SDHB mutated/low expressed PCCs/PGLs. CONCLUSIONS: Our data suggest that the downregulation of SDHB in PCCs/PGLs results in increased GLUD1 expression and may represent a potential biomarker and therapeutic target in SDHB mutated tumors and SDHB loss of activity-dependent diseases.


Subject(s)
Energy Metabolism , Oxidative Phosphorylation , Succinate Dehydrogenase/deficiency , Biomarkers , CRISPR-Cas Systems , Cell Adhesion , Cell Line , Energy Metabolism/genetics , Gene Dosage , Gene Editing , Gene Expression , Gene Knockdown Techniques , Glycolysis , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phenotype
6.
ACS Appl Mater Interfaces ; 13(49): 59546-59559, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34846839

ABSTRACT

The quest to reduce transport resistance in separations using nanomaterials has led to considerable interest in nanoscale adsorbents and ultrathin membranes. It is now established that interfacial resistance limits the performance of such nanosized materials; however, the origin of this resistance is uncertain. While it is associated with surface pore blockages and distortions in some materials, its existence even in ideal materials is largely putative. Here, we report equilibrium molecular dynamics (EMD) simulations with ideal zeolite-based nanosheets, indicating the transport resistance to be entirely distributed within the solid, without contribution from an interfacial effect. We demonstrate the presence of an internal entry region over which fluid decorrelation occurs, and in which the local transport coefficient inside the crystal is nonuniform and position-dependent, increasing to the uniform value in the bulk material at larger distances. Our EMD-based diffusivity profiles within the nanomaterial enable us to unequivocally determine the entry length, and reveal an internal excess resistance, frequently assumed to be an interfacial resistance, due to significant reduction of the internal transport coefficient in the entrance and exit regions. A decrease in the entry length with loading in PON zeolite nanosheets is seen. We demonstrate a reduction in external resistance in the external bulk chambers used in simulations, triggered by the interplay of incomplete decorrelation in the nanosheet and periodic boundary conditions imposed on the system comprising the nanosheet and surrounding bulk reservoirs when the nanosheet thickness is less than the entry length. Our analysis of the transport dynamics within the nanosheet demonstrates that, at least for ideal systems, decomposition of the inhomogeneous diffusivity-based internal resistance into an interfacial and a uniform transport coefficient-based internal contribution is not appropriate for finite-sized systems. Our results will enable the improved design of nanoscale membranes and materials for applications in separation and other processes.

7.
Sci Rep ; 11(1): 10562, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006971

ABSTRACT

Aldosterone-producing adenomas (APAs) are a major cause of primary aldosteronism (PA) and are characterized by constitutively producing aldosterone, which leads to hypertension. Several mutations have been identified in ion channels or ion channel-associated genes that result in APAs. To date, no studies have used a genome-wide association study (GWAS) approach to search for predisposing loci for APAs. Thus, we investigated Scandinavian APA cases (n = 35) and Swedish controls (n = 60) in a GWAS and discovered a susceptibility locus on chromosome Xq13.3 (rs2224095, OR = 7.9, 95% CI = 2.8-22.4, P = 1 × 10-7) in a 4-Mb region that was significantly associated with APA. Direct genotyping of sentinel SNP rs2224095 in a replication cohort of APAs (n = 83) and a control group (n = 740) revealed persistently strong significance (OR = 6.1, 95% CI = 3.5-10.6, p < 0.0005). We sequenced an adjacent gene, MAGEE1, of the sentinel SNP and identified a rare variant in one APA, p.Gly327Glu, which is complementary to other mutations in our primary cohort. Expression quantitative trait loci (eQTL) were investigated on the X-chromosome, and 24 trans-eQTL were identified. Some of the genes identified by trans-eQTL point towards a novel mechanistic explanation for the association of the SNPs with APAs. In conclusion, our study provides further insights into the genetic basis of APAs.


Subject(s)
Adenoma/genetics , Adenoma/metabolism , Aldosterone/biosynthesis , Chromosomes, Human, X , Carrier Proteins/genetics , Case-Control Studies , Cohort Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Germ-Line Mutation , Humans , Male , Middle Aged , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
Int J Mol Sci ; 21(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138083

ABSTRACT

Phaeochromocytomas and paragangliomas (PPGLs) are neuroendocrine catecholamine-producing tumours that may progress into inoperable metastatic disease. Treatment options for metastatic disease are limited, indicating a need for functional studies to identify pharmacologically targetable pathophysiological mechanisms, which require biologically relevant experimental models. Recently, a human progenitor phaeochromocytoma cell line named "hPheo1" was established, but its genotype has not been characterised. Performing exome sequencing analysis, we identified a KIF1B T827I mutation, and the oncogenic NRAS Q61K mutation. While KIF1B mutations are recurring somatic events in PPGLs, NRAS mutations have hitherto not been detected in PPGLs. Therefore, we aimed to assess its implications for the hPheo1 cell line, and possible relevance for the pathophysiology of PPGLs. We found that transient downregulation of NRAS in hPheo1 led to elevated expression of genes associated with cell adhesion, and enhanced adhesion to hPheo1 cells' extracellular matrix. Analyses of previously published mRNA data from two independent PPGL patient cohorts (212 tissue samples) revealed a subcluster of PPGLs featuring hyperactivated RAS pathway-signalling and under-expression of cell adhesion-related gene expression programs. Thus, we conclude that NRAS activity in hPheo1 decreases adhesion to their own extracellular matrix and mirrors a transcriptomic RAS-signalling-related phenomenon in PPGLs.


Subject(s)
Adrenal Gland Neoplasms/pathology , Biomarkers, Tumor/metabolism , Cell Adhesion , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Pheochromocytoma/pathology , RNA, Small Interfering/genetics , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Biomarkers, Tumor/genetics , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/genetics , Gene Expression Profiling , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Pheochromocytoma/genetics , Pheochromocytoma/metabolism , Prognosis , Tumor Cells, Cultured
9.
Eur J Endocrinol ; 181(5): K37-K41, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31491746

ABSTRACT

OBJECTIVE: To screen for CLCN2 mutations in apparently sporadic cases of aldosterone-producing adenomas (APAs). DESCRIPTION: Recently, CLCN2, encoding for the voltage-gated chloride channel protein 2 (ClC-2), was identified to be mutated in familial hyperaldosteronism II (FH II). So far, somatic mutations in CLCN2 have not been reported in sporadic cases of APAs. We screened 80 apparently sporadic APAs for mutations in CLCN2. One somatic mutation was identified at p.Gly24Asp in CLCN2. The male patient had a small adenoma in size but high aldosterone levels preoperatively. Postoperatively, the patient had normal aldosterone levels and was clinically cured. CONCLUSION: In this study, we identified a CLCN2 mutation in a sporadic APA comprising about 1% of all APAs investigated. This mutation was complementary to mutations in other susceptibility genes for sporadic APAs and may thus be a driving mutation in APA formation.


Subject(s)
Adenoma/genetics , Adenoma/metabolism , Aldosterone/metabolism , Chloride Channels/genetics , Mutation/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Adenoma/surgery , Adult , CLC-2 Chloride Channels , Gene Frequency , Humans , Male , Norway/epidemiology , Pituitary Neoplasms/surgery , Transcriptome/genetics
10.
Phys Chem Chem Phys ; 20(41): 26386-26395, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30306177

ABSTRACT

We use atomistic simulations of CH4, H2 and CO2 transport to elucidate the effect of internal interfacial barriers on gas transport within nanoscale zeolite crystals of different morphology; such barriers are shown here to have critical significance for the performance of ultrathin membranes and nanoscale mixed matrix composite membranes for gas separation. These interfacial resistances are seen to be confined to a narrow region within the zeolite, adjacent to the phase boundary, and are distinct from the external fluid phase resistance. Our results indicate that interfacial barriers depend on the nature of the zeolite pore network, and significantly hinder gas transport in nanocrystals. We show that interaction with dense surrounding media such as a polymer enhances the interfacial resistance internal to the zeolite, and further attenuates gas transport. The relative contribution of the interfacial resistance to the gas transport resistance is more significant at lower temperatures, and this resistance is larger than the external gas phase resistance by an order of magnitude. We determine the critical membrane thickness, below which these interfacial barriers are pronounced, and find that interfacial barriers can be significant up to a thickness of about 0.1 µm. Furthermore, these interfacial barriers to gas transport are significantly higher for a gas with a kinetic diameter comparable to that of the limiting pore diameter of the zeolite (methane in this case), thus improving the H2/CH4 kinetic selectivity in finite crystals. We show that small finite crystals of SAS type zeolite are selective for H2 over CH4, while large crystals are selective for CH4 over H2.

11.
ACS Appl Mater Interfaces ; 10(6): 5992-6005, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29350032

ABSTRACT

We investigate the structure of polyimide (PI) at the surface of a silicalite zeolite (MFI), as part of a model hybrid organic-inorganic mixed matrix membrane system, through equilibrium molecular dynamics simulations. Furthermore, we report a comparison of the adsorption and transport characteristics of pure components CO2 and CH4 in PI, MFI, and PI-MFI composite membranes. It is seen that incorporation of MFI zeolite into PI results in the formation of densified polymer layers (rigidified region) near the surface, having thickness around 1.2 nm, before bulklike behavior of the polymer is attained, contrary to empirical fits suggesting the existence of an approximately 1 µm thick interface between the polymer and filler. This region offers an extra resistance to gas diffusion especially for the gas with a larger kinetic diameter, CH4, thus improving the CO2/CH4 kinetic selectivity in the PI-MFI composite membrane. Furthermore, we find that the kinetic selectivity of CO2 over CH4 in the rigidified region increases with temperature and that additivity of transport resistances in MFI, interfacial layer, and bulklike region of the polymer satisfactorily explains transport behavior in the composite sandwich investigated. The gas adsorption isotherms are extracted considering the dynamics and structural transitions in the PI and PI-MFI composite upon gas adsorption, and it is seen that the rigidified layer affects the gas adsorption in the polymer in the PI-MFI hybrid system. A significant increase in CO2/CH4 selectivity as well as gas permeability is observed in the PI-MFI composite membrane compared to that in the pure PI polymer membrane, which is correlated with the high selectivity of the rigidified interfacial layer in the polymer. Thus, while enhancing transport resistance, the rigidified layer is beneficial to membrane selectivity, leading to improved performance based on the Robeson upper bound plot for polymers.

12.
Langmuir ; 33(4): 936-946, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28036185

ABSTRACT

We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5-3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a "two-mode sorption" model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10-6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.

13.
Endocr Relat Cancer ; 23(10): R437-54, 2016 10.
Article in English | MEDLINE | ID: mdl-27485459

ABSTRACT

Hypertension is a common medical condition and affects approximately 20% of the population in developed countries. Primary aldosteronism is the most common form of secondary hypertension and affects 8-13% of patients with hypertension. The two most common causes of primary aldosteronism are aldosterone-producing adenoma and bilateral adrenal hyperplasia. Familial hyperaldosteronism types I, II and III are the known genetic syndromes, in which both adrenal glands produce excessive amounts of aldosterone. However, only a minority of patients with primary aldosteronism have one of these syndromes. Several novel susceptibility genes have been found to be mutated in aldosterone-producing adenomas: KCNJ5, ATP1A1, ATP2B3, CTNNB1, CACNA1D, CACNA1H and ARMC5 This review describes the genes currently known to be responsible for primary aldosteronism, discusses the origin of aldosterone-producing adenomas and considers the future clinical implications based on these novel insights.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenal Glands/pathology , Adrenocortical Adenoma/genetics , Hyperaldosteronism/genetics , Adrenal Cortex Neoplasms/metabolism , Adrenocortical Adenoma/metabolism , Aldosterone/genetics , Aldosterone/metabolism , Animals , Genetic Predisposition to Disease , Humans , Hyperplasia/genetics
15.
BMC Cancer ; 13: 274, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23734977

ABSTRACT

BACKGROUND: NOTCH1 PEST domain mutations in chronic lymphocytic leukemia have recently been shown to be of prognostic relevance. Both NOTCH1 and NOTCH2 are constitutively activated in B-cell CLL but not expressed in normal B cells and may be involved in survival and resistance to apoptosis in CLL. We screened for mutations in different parts of both NOTCH1 and NOTCH2 genes and related the changes to survival and other known risk factors. METHODS: In a cohort of 209 CLL patients, we used single strand conformation analysis to determine which of the samples carrying the NOTCH mutations and direct dideoxy sequencing was used to determine the exact nucleotide changes. Kaplan-Meier curves and log rank test were used to determine overall survival for NOTCH1 mutated cases and Cox regression analysis was used to calculate hazardous ratios. RESULTS: In the present study, we found NOTCH1 PEST domain mutations in 6.7% of the cases. A shorter overall survival was found in patients with NOTCH1 mutations compared to wildtype (p = 0.049). Further, we also examined the extracellular and the heterodimerisation domains of the NOTCH1 gene and the PEST domain and heterodimerisation domain of the NOTCH2 gene, but no mutations were found in these regions. NOTCH1 mutations were most commonly observed in patients with unmutated IGHV gene (10/14), and associated with a more aggressive disease course. In addition, NOTCH1 mutations were almost mutually exclusive with TP53 mutations. In the combined group of NOTCH1 (6.7%) or TP53 (6.2%) mutations, a significant difference in overall survival compared to the wildtype NOTCH1 and TP53 was found (p = 0.002). CONCLUSIONS: Both NOTCH1 and TP53 mutations seem to be independent predictive markers for worse outcome in CLL-patients and this study emphasizes the contention that NOTCH1 mutations is a novel risk marker.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mutation , Receptor, Notch1/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Polymorphism, Single-Stranded Conformational , Prognosis , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...