Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(1): 5-16, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036673

ABSTRACT

Lysosomes are membranous compartments containing hydrolytic enzymes, where cellular degradation of proteins and enzymes among others occurs in a controlled manner. Lysosomal dysfunction results in various pathological situations, such as several lysosomal storage disorders, neurodegeneration, infectious diseases, cancers, and aging. In this review, we have discussed different strategies for synthesizing peptides/chimeric molecules, their lysosome-targeting ability, and their ability to treat several lysosomal associated diseases, including lysosomal storage diseases and cancers. We have also discussed the delivery of cargo molecules into the lysosome using lysosome-targeting ligand-decorated nanocarriers. The introduction of a protein-binding ligand along with a lysosome-targeting ligand to manufacture a chimeric architecture for cell-specific protein (extracellular and membrane protein) degradation ability has been discussed thoroughly. Finally, the future applications of these lysosome-targeting peptides, nanocarriers, and chimeric molecules have been pointed out.

2.
Chem Commun (Camb) ; 57(1): 109-112, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33290458

ABSTRACT

Dual enzyme responsive stable biomimetic vesicles composed of mannose-6-phosphate lipid can encapsulate and deliver dual dye/drug and protein/enzyme exclusively to the lysosome in HEK-293 cells. The release of the cargo from the vesicles can be temporally controlled due to the enzyme responsive morphology change of the M6P lipid assembly.


Subject(s)
Alkaline Phosphatase/metabolism , Esterases/metabolism , Lipids/chemistry , Liposomes/chemistry , Lysosomes/chemistry , Mannosephosphates/chemistry , Delayed-Action Preparations/chemistry , Drug Compounding , Drug Liberation , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Hydrolysis , Kinetics , Time Factors
3.
Biomater Sci ; 8(22): 6322-6336, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33025968

ABSTRACT

Receptors of carbohydrate mannose-6-phosphate (M6P) are overexpressed in specific cancer cells (such as breast cancer) and are also involved in the trafficking of mannose-6-phosphate labeled proteins exclusively onto lysosomes via cell surface M6P receptor (CI-MPR) mediated endocytosis. Herein, for the first time, mannose-6-phosphate glycopolypeptide (M6PGP)-based bioactive and stimuli-responsive nanocarriers are reported. They are selectively taken up via receptor-mediated endocytosis, and trafficked to lysosomes where they are subsequently degraded by pH or enzymes, leading to the release of the cargo inside the lysosomes. Two different amphiphilic M6P block copolymers M6PGP15-APPO44 and M6PGP15-(PCL25)2 were synthesized by click reaction of the alkyne end-functionalized M6PGP15 with pH-responsive biocompatible azide end-functionalized acetal PPO and azide end-functionalized branched PCL, respectively. In water, the amphiphilic M6P-glycopolypeptide block copolymers self-assembled into micellar nanostructures, as was evidenced by DLS, TEM, AFM, and fluorescence spectroscopy techniques. These micellar systems were competent to encapsulate the hydrophobic dye rhodamine-B-octadecyl ester, which was used as the model drug. They were stable at physiological pH but were found to disassemble at acidic pH (for M6PGP15-APPO44) or in the presence of esterase (for M6PGP15-(PCL25)2). These M6PGP based micellar nanoparticles can selectively target lysosomes in cancerous cells such as MCF-7 and MDA-MB-231. Finally, we demonstrate the clathrin-mediated endocytic pathway of the native FL-M6PGP polymer and RBOE loaded M6PGP micellar-nanocarriers, and selective trafficking of MCF-7 and MDA-MB-231 breast cancer cell lysosomes, demonstrating their potential applicability toward receptor-mediated lysosomal cargo delivery.


Subject(s)
Mannosephosphates , Nanoparticles , Endocytosis , Humans , Lysosomes
4.
Chempluschem ; 85(5): 1053-1064, 2020 05.
Article in English | MEDLINE | ID: mdl-32449828

ABSTRACT

An easy synthetic strategy was developed to synthesize the phosphate-functionalized amino acid N-carboxyanhydride (NCA), using simple primary amine initiators to obtain homo and block phospho-polypeptides with controlled molecular weight and molecular weight distribution. The methodology was extended to the synthesis of the end-functionalized homo polypeptides (15 to 50 repeat unit) and block co-polypeptides with PEG (0.7 K, 2 K, and 5 K) and glycopolypeptide (15-unit mannose glycopolypeptide) as one of the blocks. The deprotected fully water-soluble anionic phosphate-based polypeptides showed pH-dependent helical conformation with a helical content of 20 %, which further changed to ß-sheets upon addition of the enzyme alkaline phosphatase (ALP) due to dephosphorylation. The block co-polypeptide containing PEG as one of the blocks led to its self-assembly into colloidal structures, such as vesicles with a hydrodynamic diameter of ∼250 nm, due to the formation of amphiphilic block co-polymer upon dephosphorylation. The nature of the colloidal structures formed can be temporally controlled by the extent of dephosphorylation. Finally, the phospho-polypeptides serve as a template for the mineralization of calcium carbonate with varying polymorphs and morphologies.


Subject(s)
Alkaline Phosphatase/metabolism , Calcium Carbonate/chemistry , Phosphopeptides/chemistry , Amines/chemistry , Circular Dichroism , Hydrogen-Ion Concentration , Phosphopeptides/chemical synthesis , Polyethylene Glycols/chemistry , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand
SELECTION OF CITATIONS
SEARCH DETAIL
...