Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2217595120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216536

ABSTRACT

The sense of taste starts with activation of receptor cells in taste buds by chemical stimuli which then communicate this signal via innervating oral sensory neurons to the CNS. The cell bodies of oral sensory neurons reside in the geniculate ganglion (GG) and nodose/petrosal/jugular ganglion. The geniculate ganglion contains two main neuronal populations: BRN3A+ somatosensory neurons that innervate the pinna and PHOX2B+ sensory neurons that innervate the oral cavity. While much is known about the different taste bud cell subtypes, considerably less is known about the molecular identities of PHOX2B+ sensory subpopulations. In the GG, as many as 12 different subpopulations have been predicted from electrophysiological studies, while transcriptional identities exist for only 3 to 6. Importantly, the cell fate pathways that diversify PHOX2B+ oral sensory neurons into these subpopulations are unknown. The transcription factor EGR4 was identified as being highly expressed in GG neurons. EGR4 deletion causes GG oral sensory neurons to lose their expression of PHOX2B and other oral sensory genes and up-regulate BRN3A. This is followed by a loss of chemosensory innervation of taste buds, a loss of type II taste cells responsive to bitter, sweet, and umami stimuli, and a concomitant increase in type I glial-like taste bud cells. These deficits culminate in a loss of nerve responses to sweet and umami taste qualities. Taken together, we identify a critical role of EGR4 in cell fate specification and maintenance of subpopulations of GG neurons, which in turn maintain the appropriate sweet and umami taste receptor cells.


Subject(s)
Taste Buds , Taste , Taste/physiology , Geniculate Ganglion/metabolism , Tongue/innervation , Taste Buds/metabolism , Transcription Factors/metabolism , Sensory Receptor Cells/metabolism
2.
Front Cell Neurosci ; 17: 1148995, 2023.
Article in English | MEDLINE | ID: mdl-37032837

ABSTRACT

Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCß3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCß3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal.

3.
Handb Exp Pharmacol ; 275: 33-52, 2022.
Article in English | MEDLINE | ID: mdl-33580388

ABSTRACT

All organisms have the ability to detect chemicals in the environment, which likely evolved out of organisms' needs to detect food sources and avoid potentially harmful compounds. The taste system detects chemicals and is used to determine whether potential food items will be ingested or rejected. The sense of taste detects five known taste qualities: bitter, sweet, salty, sour, and umami, which is the detection of amino acids, specifically glutamate. These different taste qualities encompass a wide variety of chemicals that differ in their structure and as a result, the peripheral taste utilizes numerous and diverse mechanisms to detect these stimuli. In this chapter, we will summarize what is currently known about the signaling mechanisms used by taste cells to transduce stimulus signals.


Subject(s)
Taste Buds , Taste , Humans , Signal Transduction , Taste Buds/metabolism
4.
PLoS Genet ; 16(8): e1008925, 2020 08.
Article in English | MEDLINE | ID: mdl-32790785

ABSTRACT

Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCß signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCß3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCß3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression.


Subject(s)
Taste Buds/cytology , Taste , Afferent Pathways/cytology , Animals , Calcium Signaling , Cells, Cultured , Female , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Phospholipase C beta/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Taste Buds/metabolism , Taste Buds/physiology , Taste Perception
5.
Obesity (Silver Spring) ; 28(2): 284-292, 2020 02.
Article in English | MEDLINE | ID: mdl-31891242

ABSTRACT

OBJECTIVE: Previous studies have reported that individuals with obesity have reduced taste perception, but the relationship between obesity and taste is poorly understood. Earlier work has demonstrated that diet-induced obesity directly impairs taste. Currently, it is not clear whether these changes to taste are due to obesity or to the high-fat diet exposure. The goal of the current study was to determine whether diet or excess weight is responsible for the taste deficits induced by diet-induced obesity. METHODS: C57BL/6 mice were placed on either high-fat or standard chow in the presence or absence of captopril. Mice on captopril did not gain weight when exposed to a high-fat diet. Changes in the responses to different taste stimuli were evaluated using live cell imaging, brief-access licking, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: Diet and weight gain each affected taste responses, but their effects varied by stimulus. Two key signaling proteins, α-gustducin and phospholipase Cß2, were significantly reduced in the mice on the high-fat diet with and without weight gain, identifying a potential mechanism for the reduced taste responsiveness to some stimuli. CONCLUSIONS: Our data indicate that, for some stimuli, diet alone can cause taste deficits, even without the onset of obesity.


Subject(s)
Body Weight/drug effects , Diet, High-Fat/methods , Obesity/diet therapy , Taste Perception/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Obese
6.
Life Sci Alliance ; 2(3)2019 06.
Article in English | MEDLINE | ID: mdl-31167803

ABSTRACT

WT1 is a transcriptional activator that controls the boundary between multipotency and differentiation. The transcriptional cofactor BASP1 binds to WT1, forming a transcriptional repressor complex that drives differentiation in cultured cells; however, this proposed mechanism has not been demonstrated in vivo. We used the peripheral taste system as a model to determine how BASP1 regulates the function of WT1. During development, WT1 is highly expressed in the developing taste cells while BASP1 is absent. By the end of development, BASP1 and WT1 are co-expressed in taste cells, where they both occupy the promoter of WT1 target genes. Using a conditional BASP1 mouse, we demonstrate that BASP1 is critical to maintain the differentiated state of adult taste cells and that loss of BASP1 expression significantly alters the composition and function of these cells. This includes the de-repression of WT1-dependent target genes from the Wnt and Shh pathways that are normally only transcriptionally activated by WT1 in the undifferentiated taste cells. Our results uncover a central role for the WT1-BASP1 complex in maintaining cell differentiation in vivo.


Subject(s)
Calmodulin-Binding Proteins/metabolism , Cell Differentiation , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/metabolism , Taste Buds/cytology , Taste Buds/metabolism , WT1 Proteins/metabolism , Animals , Biomarkers , Calmodulin-Binding Proteins/genetics , Cell Differentiation/genetics , Cytoskeletal Proteins/genetics , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Mice , Mice, Transgenic , Models, Biological , Nerve Tissue Proteins/genetics , Phenotype , Protein Binding , WT1 Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 115(4): E772-E781, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311301

ABSTRACT

Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. Transient receptor potential melastatin 5 (TRPM5), a sodium-selective TRP channel, functions as a common downstream component in sweet, bitter, and umami signaling pathways. In the absence of TRPM5, mice have a reduced, but not abolished, ability to detect stimuli, suggesting that a TRPM5-independent pathway also contributes to these signals. Here, we identify a critical role for the sodium-selective TRP channel TRPM4 in taste transduction. Using live cell imaging and behavioral studies in KO mice, we show that TRPM4 and TRPM5 are both involved in taste-evoked signaling. Loss of either channel significantly impairs taste, and loss of both channels completely abolishes the ability to detect bitter, sweet, or umami stimuli. Thus, both TRPM4 and TRPM5 are required for transduction of taste stimuli.


Subject(s)
TRPM Cation Channels/metabolism , Taste Buds/metabolism , Animals , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Food Preferences , Male , Mice, Inbred C57BL , Mice, Knockout , Phospholipase C beta/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...