Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Transl Anim Sci ; 8: txae029, 2024.
Article in English | MEDLINE | ID: mdl-38585171

ABSTRACT

Zinc (Zn) supplementation has proved to mitigate the effects of heat stress with varying effects evident with Zn source during acute heat events. However, the effects of Zn supplementation during long-term summer weather patterns have yet to be explored. Therefore, the objective of this study was to identify the effects of supplementation source and level of Zn to mitigate the negative effects of long-term, cyclic heat stress in finishing swine. Six hundred cross-bred pigs were housed under thermoneutral (TN) or cyclic heat (HS) conditions simulating summer heat with acute 3-d heat waves for a 70-d study. Thermoneutral conditions were 16.7 to 18.9 °C throughout the study. HS pigs were housed at the same temperature as TN from days 0 to 18, then 28 °C/24 °C for 12 h/12 h on days 18 to 21, followed by 30 °C/26.7 °C for 12 h/12 h on days 24 to 70, except during acute heat (32 to 33 °C/29 to 30 °C, 12 h/12 h) on days 21 to 24, 42 to 45, and 63 to 66. Treatments were arranged in a 2 × 6 factorial with main effects of environment (HS vs. TN) and dietary available Zn supplementation: (1) 50 mg/kg zinc oxide (ZnO), (2) 130 mg/kg ZnO, (3) 50 mg/kg of organic Zn (Availa Zn), (4) 50 mg/kg ZnO + 40 mg/kg organic Zn, (5) 50 mg/kg ZnO + 60 mg/kg organic Zn, and (6) 50 mg/kg ZnO + 80 mg/kg organic Zn. Pigs (5 pigs/pen) were blocked by initial body weight (72.2 kg) and randomly allotted to 1 of 12 temperature and diet treatment combinations across 10 replicates. Body weight and feed intake were determined at the beginning and end of each acute heat event. All pigs were ultrasonically scanned at the 10th rib (TR) to predict loin muscle area (LMA), backfat (BF), and percent lean. Data were analyzed by the MIXED procedure in SAS with pen as the experimental unit. At day 63, HS pigs were lighter (P < 0.05), had lower overall average daily gain (ADG; P < 0.05) and average daily feed intake (P < 0.05). A diet-by-environment interaction was observed for overall ADG (P < 0.05) with diet 5 HS pigs having a 3.9% reduction in ADG whereas diet 6 had 14.4% reduction in ADG, while under TN temperatures diet 6 had the greatest overall ADG of all treatments. Other diets were intermediate in their ADG under both HS and TN conditions. Pigs under HS had less BF at the TR (P < 0.05) and a smaller LMA (P < 0.05), and a greater calculated percent lean (P < 0.05). Our results indicate that a blend of supplemental Zn sources at 50/60 mg/kg may mitigate the reduction in growth performance due to HS. While not directly contrasted, the NRC requirement of 50 mg/kg Zn may be too low to optimize finishing pig growth performance under both TN and HS conditions.

2.
Transl Anim Sci ; 7(1): txac160, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36726809

ABSTRACT

A total of 606 sows (PIC 1050) and their progeny (PIC 1050 × 280) were used to determine if feeding gestating and lactating sows a proprietary strain of Pichia guilliermondii as a whole-cell inactivated yeast product (WCY; CitriStim, ADM Animal Nutrition, Quincy, IL) improves sow and litter performance in a commercial production system. Once confirmed pregnant at d 35 post-breeding pregnancy check, sows were fed a basal gestation control (CON) diet (0.55% SID lysine) or the control diet fortified with 0.15% of the WCY replacing corn in the CON diet. Dietary treatments were also fed in lactation (1.05% SID lysine) once sows were moved into farrowing crates on approximately d 112 of gestation until weaning. Sows supplemented with WCY in gestation and lactation had increased total born piglets by 0.45 pigs (P < 0.04), piglets born alive (14.27 vs. 13.85; P < 0.04), and, therefore, heavier born alive litter weights (P < 0.001) compared to CON fed sows. A greater post cross-foster litter size (P < 0.001) meant that litter size at weaning was increased by 0.54 pigs when sows were fed WCY compared to CON (P < 0.001). However, litter weaning weights and 21-d adjusted litter weaning weights were similar (P > 0.158), although numerically greater, for WCY fed sows. Pigs from CON fed sows were 0.35 kg heavier at weaning compared to pigs from WCY fed sows (P < 0.001). This increase in weaning weight of pigs from CON fed sows is partially explained by their 0.93 d longer lactation (P < 0.001) and may also be due to the smaller litter size throughout lactation. The percent of litters treated for scours decreased from 38.3 to 14.2% when sows were fed WCY (P < 0.001). The distribution of birth and weaning weights was not impacted (P > 0.2461) by treatment. In conclusion, feeding gestating and lactating sows a proprietary strain of Pichia guilliermondii as a whole-cell inactivated yeast product increased the number of pigs born and weaned, and decreased the prevalence of scours during lactation.

3.
Sci Rep ; 11(1): 22527, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795321

ABSTRACT

In utero heat stress alters postnatal physiological and behavioral stress responses in pigs. However, the mechanisms underlying these alterations have not been determined. The study objective was to characterize the postnatal hypothalamic-pituitary-adrenal axis response of in utero heat-stressed pigs. Pigs were subjected to a dexamethasone suppression test followed by a corticotrophin releasing hormone challenge at 10 and 15 weeks of age. Following the challenge, hypothalamic, pituitary, and adrenal tissues were collected from all pigs for mRNA abundance analyses. At 10 weeks of age, in utero heat-stressed pigs had a reduced (P < 0.05) cortisol response to the corticotrophin releasing hormone challenge versus controls. Additionally, the cortisol response tended to be greater overall (P < 0.10) in 15 versus 10-week-old pigs in response to the dexamethasone suppression test. The cortisol response tended to be reduced overall (P < 0.10) in 15 versus 10-week-old pigs in response to the corticotrophin releasing hormone challenge. Hypothalamic corticotropin releasing hormone mRNA abundance tended to be greater (P < 0.10) in in utero heat-stressed versus control pigs at 15-weeks of age. In summary, in utero heat stress altered some aspects of the hypothalamic-pituitary-adrenal axis related to corticotropin releasing hormone signaling, and age influenced this response.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Heat-Shock Response , Hypothalamo-Hypophyseal System/growth & development , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/growth & development , Pituitary-Adrenal System/physiology , Animals , Dexamethasone/pharmacology , Female , Hydrocortisone/metabolism , Hypothalamus/metabolism , Inflammation , Male , Neurophysiology , RNA, Messenger/metabolism , Swine , Time Factors
4.
J Anim Sci ; 99(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33755169

ABSTRACT

Previous research demonstrates that supplementing 0.20% l-glutamine (GLN) in the diets of newly weaned and transported pigs improves growth rate to a similar extent as providing dietary antibiotics (AB). However, research comparing the effects of GLN vs. AB on intestinal physiology and the microbiome is limited. Therefore, the study objective was to compare the effects of supplementing nursery diets with GLN, AB, or no dietary antibiotics (NA) on intestinal physiology and the microbiome of pigs in a production environment following weaning and transport. Mixed-sex piglets (N = 480; 5.62 ± 0.06 kg body weight [BW]) were weaned (18.4 ± 0.2 d of age) and transported for 12 h in central Indiana, for two replicates, during the summer of 2016 and the spring of 2017. Pens were blocked by BW and allotted to one of the three dietary treatments (n = 10 pens/dietary treatment/replicate [8 pigs/pen]): AB (chlortetracycline [441 ppm] + tiamulin [38.6 ppm]), GLN (0.20% as-fed), or NA fed for 14 d. From day 14 to 34, pigs were fed common AB-free diets in two phases. On day 33, villus height:crypt depth tended to be increased (P = 0.07; 7.0%) in GLN and AB pigs vs. NA pigs. On day 33, glucagon-like peptide 2 (GLP-2) mRNA abundance was decreased (P = 0.01; 50.3%) in GLN and NA pigs vs. AB pigs. Crypt depth was increased overall on day 33 (P = 0.01; 16.2%) during the spring replicate compared with the summer replicate. Villus height:crypt depth was reduced (P = 0.01; 9.6%) during the spring replicate compared with the summer replicate on day 33. On day 13, tumor necrosis factor-alpha and occludin mRNA abundance was increased (P ≤ 0.04; 45.9% and 106.5%, respectively) and zonula occludens-1 mRNA abundance tended to be greater (P = 0.10; 19.2%) in the spring replicate compared with the summer replicate. In addition, AB pigs had increased (P = 0.01; 101.3%) GLP-2 mRNA abundance compared with GLN and NA pigs. Microbiome analysis indicated that on day 13, dietary treatment altered the microbiota community structure (P = 0.03). Specifically, the AB pigs tended to be distinct from both the NA and GLN pigs (P = 0.08), and Lactobacillus was increased nearly 2-fold in AB compared with NA pigs (q = 0.04) and GLN pigs (q = 0.22). In conclusion, GLN supplementation tended to improve some morphological markers of intestinal health similarly to AB pigs, while the microbiome composition in GLN pigs was more similar to NA pigs than AB pigs.


Subject(s)
Glutamine , Microbiota , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Swine , Weaning
5.
Sci Rep ; 11(1): 3465, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568769

ABSTRACT

Apoptosis has been suggested as the first step in the process of conversion of muscle into meat. While a potential role of apoptosis in postmortem proteolysis has been proposed, the underlying mechanisms by which metabolome changes in muscles would influence apoptotic and proteolytic process, leading to meat quality variation, has not been determined. Here, apoptotic and proteolytic attributes and metabolomics profiling of longissimus dorsi (LD) and psoas major (PM) muscles in pigs from two different production cycles (July-Jan vs. Apr-Sep) were evaluated. PM showed higher mitochondrial membrane permeability (MMP), concurrent with less extent of calpain-1 autolysis and troponin T degradation and higher abundance of HSP27 and αß-crystallin compared to LD (P < 0.05). Apr-Sep muscles showed concurrence of extended apoptosis (indicated by higher MMP), calpain-1 autolysis and troponin T degradation, regardless of muscle effects (P < 0.05). Metabolomics profiling showed Apr-Sep muscles to increase in oxidative stress-related macronutrients, including 6-carbon sugars, some branched-chain AA, and free fatty acids. Antioxidant AA (His and Asp) and ascorbic acid were higher in July-Jan (P < 0.05). The results of the present study suggest that early postmortem apoptosis might be positively associated with pro-oxidant macronutrients and negatively associated with antioxidant metabolites, consequently affecting meat quality attributes in a muscle-specific manner.


Subject(s)
Apoptosis , Metabolome , Muscle, Skeletal/metabolism , Postmortem Changes , Proteolysis , Red Meat , Swine , Animals , Autolysis , Calpain/metabolism , Cytochromes c/metabolism , Female , Heat-Shock Proteins/metabolism , Male , Metabolic Networks and Pathways , Metabolomics , Mitochondria, Muscle/metabolism , Mitochondrial Membranes/metabolism , Troponin T/metabolism
6.
Animals (Basel) ; 11(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467772

ABSTRACT

The study objective was to evaluate the effects of feed removal during acute heat stress (HS) on the cytokine response and its short-term effect on growth performance in finishing pigs. Thirty-two pigs (93.29 ± 3.14 kg initial body weight; 50% barrows and 50% gilts) were subjected to thermoneutral (TN; 23.47 ± 0.10 °C; n = 16 pigs) or HS (cycling of 25 to 36 °C; n = 16 pigs) conditions for 24 h. Within each temperature treatment, 50% of the pigs were provided with feed (AF; n = 8 pigs/temperature treatment) and 50% of the pigs had no feed access (NF; n = 8 pigs/temperature treatment). Following the 24 h temperature and feeding treatment (TF) period, all pigs had ad libitum access to feed and water and were maintained under TN conditions for 6 d. During the first 12 h of the TF period, gastrointestinal (TGI) and skin (Tsk) temperatures were recorded every 30 min. Serum cytokines were determined at 0, 4, 8, 12, and 24 h during the TF period and on Days 3 and 6 of the post-TF period. Average daily gain (ADG) and average daily feed intake were measured on Days 1, 3, and 6 of the post-TF period. Behavioral data were collected from Days 1 to 6 of the post-TF period. Heat stress increased (p < 0.02) the TGI and Tsk. During the post-TF period, interleukin-1α was greater (p < 0.01) in HS + NF compared to HS + AF and TN + NF pigs. From Days 1 to 2 of the post-TF period, the ADG was reduced (p < 0.01) in TN + AF compared to HS + AF, HS + NF, and TN + NF pigs. In conclusion, feed removal during an acute HS challenge did not reduce the cytokine response or improve short-term growth performance in finishing pigs.

7.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33159520

ABSTRACT

The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1ß and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.


Subject(s)
Heat Stress Disorders , Animals , Body Temperature , Female , Heat Stress Disorders/veterinary , Heat-Shock Response , Immunity, Innate , Lipopolysaccharides , Pregnancy , Sus scrofa , Swine
8.
Transl Anim Sci ; 4(3): txaa157, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33123679

ABSTRACT

Supplementing nursery diets with 0.20% L-glutamine (GLN) may provide similar growth and health benefits as dietary antibiotics, but it was unknown if greater inclusion levels may provide additional benefits. Therefore, the study objective was to evaluate the impact of replacing dietary antibiotics with increasing GLN levels on growth performance, therapeutic antibiotic treatment rates, welfare measures, and production costs in pigs after weaning and transport. We hypothesized that withholding dietary antibiotics may negatively impact performance and increase therapeutic treatment rate, and that diet supplementation with 0.20% to 1.00% GLN may incrementally improve productivity and reduce therapeutic antibiotic treatment rates compared with dietary antibiotics. Mixed sex pigs (N = 308; 5.64 ± 0.06 kg body weight [BW]) were weaned (19.1 ± 0.2 d of age) and transported in central Indiana in 2017. Pigs were blocked by BW and allotted to one of seven dietary treatments (n = 8 pens/dietary treatment): dietary antibiotics (positive control [PC]; chlortetracycline [441 mg/kg] + tiamulin [38.6 mg/kg]), no antibiotics or added GLN (negative control [NC]), 0.20% GLN, 0.40% GLN, 0.60% GLN, 0.80% GLN, or 1.00% GLN fed for 14 d. From d 14 to 35, pigs were provided nonantibiotic common diets in two phases. Overall, average daily gain (ADG) was reduced (P = 0.01; 17.7%) from d 0 to 14 in NC, 0.20% GLN, 0.60% GLN, 0.80% GLN, and 1.00% GLN pigs compared with PC pigs, but no ADG differences were detected between 0.40% GLN pigs and PC pigs. Increasing GLN in the diet tended to increase ADG (linear; P = 0.10). Overall, d 35 BW was greater (P = 0.01) in 0.80% GLN and PC pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, and was greater for 0.40% GLN and 1.00% GLN pigs vs. 0.20% GLN pigs. However, no d 35 BW differences were detected (P > 0.05) between PC, 0.40% GLN, 0.80% GLN, and 1.00% GLN pigs. Increasing GLN in the diet tended to increase (linear; P = 0.08) d 35 BW. Overall, income over feed and therapeutic injectable antibiotics cost (IOFAC) for enteric and unthrifty challenges were greater (P = 0.02) in 0.80% GLN pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, but no IOFACs for enteric and unthrifty challenges differences were detected between 0.80% GLN pigs and 0.40% GLN, 1.00% GLN, and PC pigs. In conclusion, GLN supplemented pigs had improved performance after weaning and transport compared with the NC pigs with 0.40% GLN being the most effective level.

9.
J Anim Sci ; 98(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32841327

ABSTRACT

Dietary antibiotic use has been limited in swine production due to concerns regarding antibiotic resistance. However, this may negatively impact the health, productivity, and welfare of pigs. Therefore, the study objective was to determine if combining dietary synbiotics and 0.20% l-glutamine would improve pig growth performance and intestinal health following weaning and transport when compared with traditionally used dietary antibiotics. Because previous research indicates that l-glutamine improves swine growth performance and synbiotics reduce enterogenic bacteria, it was hypothesized that supplementing diets with 0.20% l-glutamine (GLN) and synbiotics (SYN; 3 strains of Lactobacillus [1.2 × 10^9 cfu/g of strain/pig/d] + ß-glucan [0.01 g/pig/d] + fructooligosaccharide [0.01 g/pig/d]) would have an additive effect and improve pig performance and intestinal health over that of dietary antibiotics. Mixed-sex pigs (N = 226; 5.86 ± 0.11 kg body weight [BW]) were weaned (19.4 ± 0.2 d of age) and transported for 12 h in central Indiana. Pigs were blocked by BW and allotted to one of two dietary treatments (5 to 6 pigs per pen): antibiotics (positive control [PC]; chlortetracycline [441 ppm] + tiamulin [38.5 ppm]), no antibiotics (negative control [NC]), GLN, SYN, or the NC diet with both the GLN and SYN additives (GLN + SYN) fed for 14 d. From day 14 post-weaning to the end of the grow-finish period, all pigs were provided common antibiotic-free diets. Data were analyzed using PROC GLIMMIX and PROC MIXED in SAS 9.4. Overall, haptoglobin was greater (P = 0.03; 216%) in NC pigs compared with PC pigs. On day 13, GLN and PC pigs tended to have reduced (P = 0.07; 75.2% and 67.3%, respectively) haptoglobin compared with NC pigs. On day 34, the jejunal goblet cell count per villi and per millimeter tended to be greater (P < 0.08; 71.4% and 62.9%, respectively) in SYN pigs compared with all other dietary treatments. Overall, jejunal mucosa tumor necrosis factor-alpha (TNFα) gene expression tended to be greater (P = 0.09; 40.0%) in NC pigs compared with PC pigs on day 34. On day 34, jejunal mucosa TNFα gene expression tended to be greater (P = 0.09; 33.3%, 41.2%, and 60.0%, respectively) in GLN pigs compared with SYN, GLN + SYN, and PC pigs. Although it was determined that some metrics of pig health were improved by the addition of GLN and SYN (i.e., haptoglobin and goblet cell count), overall, there were very few differences detected between dietary treatments and this may be related to the stress load incurred by the pigs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dietary Supplements/analysis , Glutamine/administration & dosage , Swine/physiology , Synbiotics/administration & dosage , Animal Feed/analysis , Animals , Body Weight/drug effects , Diet/veterinary , Female , Intestinal Mucosa/drug effects , Intestines/microbiology , Male , Weaning
10.
J Anim Sci ; 98(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32835367

ABSTRACT

In utero heat stress (IUHS) increases the energy requirements of pigs during postnatal life, and this may compound weaning and transport stress. The study objective was to evaluate and mitigate the negative effects of IUHS following weaning and transport through the provision of a nutrient-dense (ND) nursery diet formulated to meet the greater energy requirements of IUHS pigs during the first 14 d postweaning and transport. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cycling 26 to 36 °C) conditions for the first half of gestation (day 6 to 59) and then TN conditions (20.9 ± 2.3 °C) until farrowing. Nine TN gilts and 12 HS gilts produced litters. At weaning (16.2 ± 0.4 d), mixed-sex piglets (N = 160; 4.78 ± 0.15 kg body weight [BW]) were transported (loading + transport + unloading) for 11 h 40 min. Following transport, piglets were blocked into pens (n = 4 pigs/pen) by in utero and dietary treatments: in utero thermoneutral (IUTN) + control (C) diet (n = 10 pens), IUTN + ND (n = 10 pens), IUHS + C (n = 10 pens), and IUHS + ND (n = 10 pens). Treatment diets were fed from day 1 to 14 postweaning and transport (period 1), and the C diet was fed to all pigs from day 14 to 35 postweaning and transport (period 2). Production measures were taken in 7 d intervals to calculate average daily gain (ADG), average daily feed intake (ADFI), average daily net energy intake (ADEI), gain:feed, and gain:net energy intake. Blood samples were collected prior to transport, following transport, and on days 2, 7, 14, 28, and 35 postweaning and transport to analyze cortisol, glucose, insulin, and nonesterified fatty acids. Behavior was assessed through video-recording on days 3, 5, 8, 11, and 13 postweaning and transport. In period 1, ADG was reduced (P = 0.04; 20.0 g/d) in IUHS vs. IUTN pigs. Pigs fed ND diets had reduced ADFI (P = 0.02; 9.3%) compared with C diet-fed pigs during period 1, which resulted in similar ADEI (P = 0.23; 1,115 ± 35 kcal/d). During transport, cortisol was decreased (P = 0.03; 25.8%) in IUHS vs. IUTN pigs. On day 2, glucose was decreased (P = 0.01; 13.8%) in IUHS vs. IUTN pigs. No in utero treatment-related behavior differences were observed but lying was reduced (P = 0.03; 6.5%) and standing was increased (P = 0.04; 14.1%) in ND vs. C pigs overall. In summary, IUHS reduced growth performance in pigs following weaning and transport, and providing an ND diet did not rescue the lost performance.


Subject(s)
Energy Intake , Heat-Shock Response , Swine , Weaning , Animal Feed/analysis , Animals , Body Weight , Diet , Female , Heat Stress Disorders/veterinary , Pregnancy , Swine Diseases
11.
Front Vet Sci ; 7: 140, 2020.
Article in English | MEDLINE | ID: mdl-32258069

ABSTRACT

Alternative feed supplements have shown promising effects in terms of performance, but their effects on welfare have had little evaluation. In the present study, we aimed at evaluating the effect of diet supplementation on welfare indicators. A total of 246 piglets were weaned and transported for 12 h. After transport, they were assigned to one of 3 diets for a 14-day period: A-an antibiotic diet including chlortetracycline and tiamulin, NA-a control diet without any antibiotic or feed supplement, GLN-a diet including 0.20% L-glutamine. After the 14-day period, all piglets were fed the same diet. Tear staining was measured 11 times post-weaning (from d0 to 147). Skin lesions were counted before and after weaning (d-2, 2, and 36). Novel object tests (NOT) were done in groups 4 times post-weaning (d17, 47, 85, 111). Samples for 16S rRNA gene composition were collected prior to transport (d0), following the 14-day period (d14) and at the conclusion of the nursery phase (d34). The NA pigs appeared less interested in novel objects. On d17, they avoided the object less than A pigs (P < 0.05). They spent less time exploring the object on d85 and took longer to interact with the object on d111 than A and GLN pigs (P < 0.05). NA pigs also appeared more sensitive to environment and management. They had larger tear stains than GLN pigs on d84 and 110 (P < 0.05). On d2, NA pigs had more lesions than A and GLN (P < 0.01). In terms of microbiota composition, GLN had higher α-diversity than A and NA (P < 0.001). Differences between dietary treatments were absent at d0, were demonstrated at d14 and disappeared at d34. Pearson correlations between aggression, stress and anxiety indicators and bacterial populations were medium to high from 0.31 to 0.69. The results demonstrate that short-term feeding strategy can have both short- and long-term effects on behavior and welfare, that may partly be explained by changes in gut microbiota composition. Supplementation with GLN appears to confer similar benefits to dietary antibiotics and thus could be a viable alternative.

12.
J Anim Sci ; 98(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32020198

ABSTRACT

Feed consumption increases body temperature and may delay a return to euthermia and exacerbate intestinal injury following acute hyperthermia recovery in pigs. Therefore, the study objective was to evaluate the effects of feed removal on body temperature and intestinal morphology in pigs exposed to acute hyperthermia and then rapidly cooled. Twenty-four gilts (78.53 ± 5.46 kg) were exposed to thermoneutral (TN; n = 12 pigs; 21.21 ± 0.31 °C; 61.88 ± 6.93% RH) conditions for 6 h, or heat stress (HS; 38.51 ± 0.60 °C; 36.38 ± 3.40% RH) conditions for 3 h followed by a 3-h recovery period of rapid cooling (HSC;n = 12 pigs; TN conditions and cold water dousing). Within each recovery treatment, one-half of the pigs were provided feed ad libitum (AF; n = 6 pigs per recovery treatment) and one-half of the pigs were not provided feed (NF; n = 6 pigs per recovery treatment). Gastrointestinal (TGI), vaginal (TV), and skin (TSK) temperatures and respiration rate (RR) were recorded every 15 min. Pigs were video-recorded to assess feeding and drinking attempts. Immediately following the 6-h thermal stress period, pigs were euthanized, and intestinal samples were collected to assess morphology. During the HS period, Tv, TGI, TSK, and RR were increased (P < 0.01; 1.63, 2.05, 8.32 °C, and 88 breaths per min, respectively) in HSC vs. TN pigs, regardless of feeding treatment. Gastrointestinal temperature was greater (P = 0.03; 0.97 °C) in HSC + AF vs. HSC + NF pigs from 45 to 180 min of the recovery period. During the recovery period, feeding attempts were greater (P = 0.02; 195.38%) in AF vs. NF pigs. No drinking attempt differences were detected with any comparison (P > 0.05). A decrease (P < 0.01) in jejunum and ileum villus height (24.72% and 26.11%, respectively) and villus height-to-crypt depth ratio (24.03% and 25.29%, respectively) was observed in HSC vs. TN pigs, regardless of feeding treatment. Ileum goblet cells were reduced (P = 0.01; 37.87%) in HSC vs. TN pigs, regardless of feeding treatment. In summary, TGI decreased more rapidly following acute hyperthermia when the feed was removed, and this may have implications toward using feed removal as a strategy to promote acute hyperthermia recovery in pigs.


Subject(s)
Animal Feed/adverse effects , Body Temperature Regulation , Eating , Fever/veterinary , Swine/physiology , Animals , Body Temperature , Cold Temperature , Female , Gastrointestinal Tract/cytology , Heat-Shock Response , Hot Temperature , Intestinal Mucosa/cytology , Intestines/cytology , Respiratory Rate
13.
J Therm Biol ; 87: 102481, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32001015

ABSTRACT

Rapid cooling after acute hyperthermia may cause a sustained increase in body temperature and exacerbate intestinal damage in pigs. Therefore, the study objective was to evaluate the temporal effects of rapid and gradual cooling on body temperature response and intestinal integrity after acute hyperthermia in pigs. In three repetitions, 54 pigs [83.3 ± 6.7 kg initial body weight (BW)], balanced by sex were exposed to thermoneutral conditions for 6 h (TN; n = 6 pigs/repetition; 21.1 ± 2.0°C), or heat stress conditions (HS; 39.3 ± 1.6°C) for 3 h, followed by a 3 h recovery period of gradual cooling [HSGC; n = 6 pigs/repetition; gradual decrease from HS to TN conditions] or rapid cooling [HSRC; n = 6 pigs/repetition; rapid TN exposure and cold water (4.0°C) dousing every 30 min for 1.5 h]. Feed was withheld throughout the entire 6 h period, but water was provided ad libitum. Gastrointestinal (TGI) and rectal (TR) temperatures were recorded every 15 min during the HS and recovery periods. Six pigs per repetition (n = 2/treatment) were euthanized and jejunal and ileal samples were collected for histology immediately after (d 0), 2 d after, and 4 d after the recovery period. Data were analyzed using PROC MIXED in SAS 9.4. Overall, rapid cooling reduced TR and TGI (P < 0.01; 0.95°C and 0.74°C, respectively) compared to gradual cooling. Jejunal villus height was reduced overall (P = 0.02; 14.01%) in HSGC compared to HSRC and TN pigs. Jejunal villus height-to-crypt depth ratio was reduced overall (P = 0.05; 16.76%) in HSGC compared to TN pigs. Ileal villus height was reduced overall (P < 0.01; 16.95%) in HSGC compared to HSRC and TN pigs. No other intestinal morphology differences were detected. In summary, HSRC did not cause a sustained increase in body temperature and did not negatively impact biomarkers of intestinal integrity in pigs.


Subject(s)
Body Temperature , Fever/veterinary , Hypothermia, Induced/adverse effects , Intestinal Diseases/etiology , Intestines/pathology , Swine Diseases/etiology , Swine/physiology , Animals , Fasting/adverse effects , Fever/therapy , Hypothermia, Induced/methods , Intestinal Absorption , Intestinal Diseases/physiopathology , Intestinal Diseases/veterinary , Intestines/physiopathology , Swine Diseases/physiopathology , Swine Diseases/therapy
14.
J Anim Sci ; 97(5): 2035-2052, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-30924491

ABSTRACT

Antibiotic use has been limited in U.S. swine production. Therefore, the objective was to determine whether supplementing l-glutamine at cost-effective levels can replace dietary antibiotics to improve piglet welfare and productivity following weaning and transport. Based on previous research, we hypothesized that withholding dietary antibiotics would negatively affect pigs while diet supplementation with 0.20% l-glutamine (GLN) would have similar effects on pig performance and health as antibiotics. Mixed sex piglets (N = 480; 5.62 ± 0.06 kg BW) were weaned (18.4 ± 0.2 d of age) and transported for 12 h in central Indiana, for 2 replicates, during the summer of 2016 and the spring of 2017. Pigs were blocked by BW and allotted to 1 of 3 dietary treatments (n = 10 pens/dietary treatment/replicate [8 pigs/pen]); antibiotics (A; chlortetracycline [441 ppm] + tiamulin [38.6 ppm]), no antibiotics (NA), or GLN fed for 14 d. On days 15 to 34, pigs were provided common antibiotic-free diets in 2 phases. Data were analyzed using PROC MIXED in SAS 9.4. Day 14 BW and days 0 to 14 ADG were greater (P = 0.01) for A (5.6% and 18.5%, respectively) and GLN pigs (3.8% and 11.4%, respectively) compared with NA pigs, with no differences between A and GLN pigs. Days 0 to 14 ADFI increased for A (P < 0.04; 9.3%) compared with NA pigs; however, no differences were detected when comparing GLN with A and NA pigs. Once dietary treatments ceased, no differences (P > 0.05) in productivity between dietary treatments were detected. On day 13, plasma tumor necrosis factor alpha (TNF-α) was reduced (P = 0.02) in A (36.7 ± 6.9 pg/mL) and GLN pigs (40.9 ± 6.9 pg/mL) vs. NA pigs (63.2 ± 6.9 pg/mL). Aggressive behavior tended to be reduced overall (P = 0.09; 26.4%) in GLN compared with A pigs, but no differences were observed between A and GLN vs. NA pigs. Huddling, active, and eating/drinking behaviors were increased overall (P < 0.02; 179%, 37%, and 29%, respectively) in the spring replicate compared with the summer replicate. When hot carcass weight (HCW) was used as a covariate, loin depth and lean percentage were increased (P = 0.01; 4.0% and 1.1%, respectively) during the spring replicate compared with the summer replicate. In conclusion, GLN supplementation improved pig performance and health after weaning and transport similarly to A across replicates; however, the positive effects of A and GLN were diminished when dietary treatments ceased.


Subject(s)
Animal Welfare , Anti-Bacterial Agents/pharmacology , Dietary Supplements/analysis , Glutamine/pharmacology , Swine/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Feeding Behavior , Female , Male , Swine/growth & development , Transportation , Weaning
15.
Transl Anim Sci ; 3(4): 1375-1382, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32704900

ABSTRACT

The effects of pen location on swine thermoregulation and growth performance were determined over 6 weeks during late summer. A total of 128 mixed sex pigs [Duroc × (Landrace × Yorkshire)] were randomly assigned to 16 pens in two grow-finish barns (n = 8 pens/barn; 57.43 ± 1.33 kg initial body weight (BW)). Pen locations were determined based on orientation to ventilation fans and air inlets. Internal pens (IP; n = 4/barn) were in direct line of sight between the fans and air inlets while peripheral pens (PP; n = 4/barn) were located 0.70 ± 0.29 m to either side of a fan. Two sentinel gilts per pen were selected and vaginal temperature (TV) was measured in 10-min intervals using TV data loggers. Additionally, trunk skin temperature (TS) was measured with an infrared camera and respiration rate (RR) was measured by counting flank movements of the sentinel gilts twice daily (0800 and 1500 hours). Pen airspeed was measured twice daily (0800 and 1500 hours) at pig level with an anemometer. Individual pen ambient temperature (TA) and relative humidity (RH) were recorded daily in 10-min intervals. Feed consumption and BW were determined every 2 weeks. Data were analyzed using PROC MIXED in SAS 9.4. Although airspeed was reduced overall (P = 0.01; 11%) in PP compared with IP, no differences (P > 0.10) in TA (27.53 ± 1.73 °C) or RH (68.47 ± 5.92%) were detected. An overall increase (P ≤ 0.02) in TV (0.23 °C), minimum TV (0.18 °C), and maximum TV (0.29 °C) was detected in PP versus IP housed pigs. Similarly, from 0800 to 1900 hours and 2000 to 0700 hours, TV was greater overall (P ≤ 0.01; 0.22 and 0.25 °C, respectively) in PP compared with IP housed pigs. An overall decrease in TS (P = 0.04) was observed in PP (37.39 ± 0.14 °C) compared with IP (37.61 ± 0.14 °C) housed pigs. No RR differences (P > 0.10; 76 ± 4 breaths per minute) were detected with any comparison. While no average daily gain (ADG) and average daily feed intake (ADFI) differences were detected (P > 0.10; 0.74 ± 0.03 kg/d and 2.26 ± 0.08 kg/d, respectively), gain-to-feed ratio (G:F) was decreased (P = 0.02; 6%) in PP compared with IP housed pigs. In summary, pigs located in PP had greater body temperature and reduced G:F despite similarities in TA and RH between all pens.

16.
J Anim Sci ; 96(5): 1640-1653, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29635346

ABSTRACT

Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress response, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. From d 7 to 9 post-farrowing, 12 first-parity sows and their litters were exposed to thermoneutral (ELTN; 25.4 ± 1.1 °C w/heat lamp; n = 4), HS (ELHS; cycling 32-38 °C w/heat lamp; n = 4), or cold stress (ELCS; 25.4 ± 1.1 °C w/no heat lamp; n = 4) conditions, and then from d 10 until weaning all piglets were exposed to thermoneutral (TN) conditions (25.3 ± 1.9 °C w/heat lamp). During the ELTS period, respiration rate, rectal temperature (TR), and skin temperature (TS) of three mixed-sex piglets per dam were monitored daily (0800, 1200, 1600, 2000 h). At 13 ± 1.3 d of age, temperature recorders were implanted intra-abdominally into all piglets. At weaning (20.0 ± 1.3 d of age), piglets were bled and then herded up a ramp into a simulated transport trailer and exposed to HS conditions (cycling 32-38 °C) for 8 h. During the 8 h simulated transport, core body temperature (TC) and TS were assessed every 15 min. After the simulated transport, piglets were unloaded from the trailer, bled, weighed, and then housed individually in TN conditions (28.5 ± 0.7 °C) for 7 d. During this time, ADFI and ADG were monitored, blood samples were taken on d 1, 4, and 7, and piglets were video-recorded to assess behavior. Piglets were sacrificed on d 8 post-simulated transport and intestinal morphology was assessed. Data were analyzed using PROC MIXED in SAS 9.4. In the ELTS period, piglet TR was increased overall (P = 0.01) in ELHS (39.77 ± 0.05 °C) compared to ELTN (39.34 ± 0.05 °C) and ELCS (39.40 ± 0.05 °C) litters. During simulated transport, TC was greater (P = 0.02) in ELHS (40.84 ± 0.12 °C) compared to ELTN (40.49 ± 0.12 °C) and ELCS (40.39 ± 0.12 °C) pigs. Following simulated transport, BW loss was greater (P = 0.01; 40%) for ELHS compared to ELTN and ELCS pigs and ADFI was reduced (P = 0.05; 28.6%) in ELHS compared to ELTN pigs. Sitting behavior tended to be increased (P = 0.06; 47.4%) in ELHS vs. ELCS or ELTN pigs. Overall, circulating cortisol was greater for ELHS (P ≤ 0.01; 38.8%) compared to ELCS and ELTN pigs. Goblet cells per villi were reduced (P = 0.02; 20%) in the jejunum of ELHS vs. ELCS and ELTN pigs. In summary, ELHS reduced thermotolerance and increased the future stress response of piglets compared to ELCS and ELTN.


Subject(s)
Behavior, Animal/physiology , Heat-Shock Response/physiology , Swine/physiology , Thermotolerance/physiology , Animals , Body Temperature , Body Temperature Regulation , Computer Simulation , Female , Hot Temperature , Intestinal Mucosa/anatomy & histology , Intestines/anatomy & histology , Parity , Pregnancy , Stress, Physiological , Transportation , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...