Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Med Sci Monit ; 30: e944050, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971968

ABSTRACT

BACKGROUND Measurement of bite force plays a crucial role in assessment of the masticatory system. With a growing interest in detecting occlusal irregularities, bite force sensors have garnered attention in the biomedical field. This study aimed to introduce a hydrogel bite force sensor, based on hydroxyethyl-cellulose-fructose-water (HEC-F-water), for premolar and molar teeth, and to evaluate it using optical profilometry, infrared spectroscopy (FTIR), and Instron Tension testing system, with 2.5 cm (1 inch) margins at top, bottom, right, and left. MATERIAL AND METHODS We fabricated 20 HEC-F-water hydrogel samples sized with surface of 1×1 cm, with 2 different widths - 1 mm and 5 mm. The samples were characterized using optical profilometry and FTIR and their electrical characteristics were determined using an impedance analyzer. Aluminum (Al) electrodes, fabricated using Cutting Plotter, were used to form a HEC-F-water-based transducer, which was used for bite force sensing. The Instron tensile testing system was employed, utilizing 3D printed models of the upper and lower jaw, to simulate biting. Forces in the range between 40 N and 540 N were exerted upon the transducer, and the output change in the electrical signal was measured. RESULTS The study determined the transfer function between bite force and capacitance. The fabricated sensor exhibited a sensitivity of 3.98 pF/N, an input range of 500 N, output range of 2 nF, and accuracy of 95.9%. CONCLUSIONS This study introduces an edible bite force sensor employing an edible hydrogel as a dielectric, presenting a novel avenue in the development of edible sensorics in dentistry.


Subject(s)
Bite Force , Humans , Hydrogels/chemistry , Molar , Fructose , Mastication/physiology , Spectroscopy, Fourier Transform Infrared/methods , Cellulose/chemistry , Water , Bicuspid
2.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067626

ABSTRACT

Cancer is a multifactorial disease characterized by various hallmarks, including uncontrolled cell growth, evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, among others. Traditional cancer therapies often target specific hallmarks, leading to limited efficacy and the development of resistance. Thus, there is a growing need for alternative strategies that can address multiple hallmarks concomitantly. Ursolic acid (UA), a naturally occurring pentacyclic triterpenoid, has recently emerged as a promising candidate for multitargeted cancer therapy. This review aims to summarize the current knowledge on the anticancer properties of UA, focusing on its ability to modulate various cancer hallmarks. The literature reveals that UA exhibits potent anticancer effects through diverse mechanisms, including the inhibition of cell proliferation, induction of apoptosis, suppression of angiogenesis, inhibition of metastasis, and modulation of the tumor microenvironment. Additionally, UA has demonstrated promising activity against different cancer types (e.g., breast, lung, prostate, colon, and liver) by targeting various cancer hallmarks. This review discusses the molecular targets and signaling pathways involved in the anticancer effects of UA. Notably, UA has been found to modulate key signaling pathways, such as PI3K/Akt, MAPK/ERK, NF-κB, and Wnt/ß-catenin, which play crucial roles in cancer development and progression. Moreover, the ability of UA to destroy cancer cells through various mechanisms (e.g., apoptosis, autophagy, inhibiting cell growth, dysregulating cancer cell metabolism, etc.) contributes to its multitargeted effects on cancer hallmarks. Despite promising anticancer effects, this review acknowledges hurdles related to UA's low bioavailability, emphasizing the need for enhanced therapeutic strategies.


Subject(s)
Neoplasms , Triterpenes , Male , Humans , Phosphatidylinositol 3-Kinases , Triterpenes/pharmacology , Triterpenes/therapeutic use , Signal Transduction , Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment
3.
Anal Chem ; 95(46): 16950-16957, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37939234

ABSTRACT

Conventional antimicrobial susceptibility testing (AST) methods require 24-48 h to provide results, creating the need for a probabilistic antibiotic therapy that increases the risk of antibiotic resistance emergence. Consequently, the development of rapid AST methods has become a priority. Over the past decades, sedimentation field-flow fractionation (SdFFF) has demonstrated high sensitivity in early monitoring of induced biological events in eukaryotic cell populations. This proof-of-concept study aimed at investigating SdFFF for the rapid assessment of bacterial susceptibility to antibiotics. Three bacterial species were included (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) with two panels of antibiotics tailored to each bacterial species. The results demonstrate that SdFFF, when used in "Hyperlayer" elution mode, enables monitoring of antibiotic-induced morphological changes. The percentage variation of the retention factor (PΔR) was used to quantify the biological effect of antibiotics on bacteria with the establishment of a threshold value of 16.8% to differentiate susceptible and resistant strains. The results obtained with SdFFF were compared to that of the AST reference method, and a categorical agreement of 100% was observed. Overall, this study demonstrates the potential of SdFFF as a rapid method for the determination of antibiotic susceptibility or resistance since it is able to provide results within a shorter time frame than that needed for conventional methods (3-4 h vs 16-24 h, respectively), enabling earlier targeted antibiotic therapy. Further research and validation are necessary to establish the effectiveness and reliability of SdFFF in clinical settings.


Subject(s)
Fractionation, Field Flow , Fractionation, Field Flow/methods , Reproducibility of Results , Anti-Bacterial Agents/pharmacology , Bacteria , Klebsiella pneumoniae , Escherichia coli , Microbial Sensitivity Tests
4.
Cancers (Basel) ; 15(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38001748

ABSTRACT

Cancer, characterized by the unregulated growth and dissemination of malignantly transformed cells, presents a significant global health challenge. The multistage process of cancer development involves intricate biochemical and genetic alterations within target cells. Cancer chemoprevention has emerged as a vital strategy to address this complex issue to mitigate cancer's impact on healthcare systems. This approach leverages pharmacologically active agents to block, suppress, prevent, or reverse invasive cancer development. Among these agents, piperine, an active alkaloid with a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and immunomodulatory effects, has garnered attention for its potential in cancer prevention and treatment. This comprehensive review explores piperine's multifaceted role in inhibiting the molecular events and signaling pathways associated with various stages of cancer development, shedding light on its promising prospects as a versatile tool in cancer chemoprevention. Furthermore, the review will also delve into how piperine enhances the effectiveness of conventional treatments such as UV-phototherapy and TRAIL-based therapy, potentially synergizing with existing therapeutic modalities to provide more robust cancer management strategies. Finally, a crucial perspective of the long-term safety and potential side effects of piperine-based therapies and the need for clinical trials is also discussed.

5.
Antibiotics (Basel) ; 12(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37887244

ABSTRACT

Amphotericin B is the oldest antifungal molecule which is still currently widely used in clinical practice, in particular for the treatment of invasive diseases, even though it is not devoid of side effects (particularly nephrotoxicity). Recently, its redox properties (i.e., both prooxidant and antioxidant) have been highlighted in the literature as mechanisms involved in both its activity and its toxicity. Interestingly, similar properties can be described for inorganic nanoparticles. In the first part of the present review, the redox properties of Amphotericin B and inorganic nanoparticles are discussed. Then, in the second part, inorganic nanoparticles as carriers of the drug are described. A special emphasis is given to their combined redox properties acting either as a prooxidant or as an antioxidant and their connection to the activity against pathogens (i.e., fungi, parasites, and yeasts) and to their toxicity. In a majority of the published studies, inorganic nanoparticles carrying Amphotericin B are described as having a synergistic activity directly related to the rupture of the redox homeostasis of the pathogen. Due to the unique properties of inorganic nanoparticles (e.g., magnetism, intrinsic anti-infectious properties, stimuli-triggered responses, etc.), these nanomaterials may represent a new generation of medicine that can synergistically enhance the antimicrobial properties of Amphotericin B.

6.
Molecules ; 28(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836797

ABSTRACT

Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.


Subject(s)
Anti-Bacterial Agents , Calixarenes , Anti-Bacterial Agents/pharmacology , Calixarenes/pharmacology , Calixarenes/chemistry , Drug Resistance, Bacterial
7.
Microorganisms ; 11(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630644

ABSTRACT

The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.

8.
Cancers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37568642

ABSTRACT

Colorectal cancer (CRC) poses a significant challenge in healthcare, necessitating the exploration of novel therapeutic strategies. Natural compounds such as polyphenols with inherent anticancer properties have gained attention as potential therapeutic agents. This review highlights the need for novel therapeutic approaches in CRC, followed by a discussion on the synthesis of polyphenols-based nanoparticles. Various synthesis techniques, including dynamic covalent bonding, non-covalent bonding, polymerization, chemical conjugation, reduction, and metal-polyphenol networks, are explored. The mechanisms of action of these nanoparticles, encompassing passive and active targeting mechanisms, are also discussed. The review further examines the intrinsic anticancer activity of polyphenols and their enhancement through nano-based delivery systems. This section explores the natural anticancer properties of polyphenols and investigates different nano-based delivery systems, such as micelles, nanogels, liposomes, nanoemulsions, gold nanoparticles, mesoporous silica nanoparticles, and metal-organic frameworks. The review concludes by emphasizing the potential of nanoparticle-based strategies utilizing polyphenols for CRC treatment and highlights the need for future research to optimize their efficacy and safety. Overall, this review provides valuable insights into the synthesis, mechanisms of action, intrinsic anticancer activity, and enhancement of polyphenols-based nanoparticles for CRC treatment.

9.
Pharmaceutics ; 15(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376215

ABSTRACT

Prostate cancer is a major health concern worldwide, and current treatments, such as surgery, radiation therapy, and chemotherapy, are associated with significant side effects and limitations. Photodynamic therapy (PDT) is a promising alternative that has the potential to provide a minimally invasive and highly targeted approach to treating prostate cancer. PDT involves the use of photosensitizers (PSs) that are activated by light to produce reactive oxygen species (ROS), which can induce tumor cell death. There are two main types of PSs: synthetic and natural. Synthetic PSs are classified into four generations based on their structural and photophysical properties, while natural PSs are derived from plant and bacterial sources. Combining PDT with other therapies, such as photothermal therapy (PTT), photoimmunotherapy (PIT), and chemotherapy (CT), is also being explored as a way to improve its efficacy. This review provides an overview of conventional treatments for prostate cancer, the underlying principles of PDT, and the different types of PSs used in PDT as well as ongoing clinical studies. It also discusses the various forms of combination therapy being explored in the context of PDT for prostate cancer, as well as the challenges and opportunities associated with this approach. Overall, PDT has the potential to provide a more effective and less invasive treatment option for prostate cancer, and ongoing research is aimed at improving its selectivity and efficacy in clinical settings.

10.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838541

ABSTRACT

Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.


Subject(s)
Lepidoptera , Moths , Solanum lycopersicum , Animals
11.
Antibiotics (Basel) ; 11(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36551356

ABSTRACT

During a previous study that identified plants used in traditional medicine in Togo to treat infectious diseases, Daniellia oliveri was specifically reported to treat intertrigo and candidiasis. Consequently, to explore the anti-infective potential of this plant, we investigated the antibacterial and the antifungal activity of the plant's parts, as well as the cytotoxic activities of raw extracts and subsequent fractions, and the chemical composition of the most active fractions. In order to evaluate the antimicrobial activity, MICs were determined using the broth dilution method. Then, the most active fractions were evaluated for cytotoxicity by using normal human cells (MRC-5 cells) via the MTT assay. Finally, the most active and not toxic fractions were phytochemically investigated by GC-MS. Interestingly, all the raw extracts and fractions were active against the bacteria tested, with MICs ranging from 16 µg/mL to 256 µg/mL, while no antifungal activity was observed at 256 µg/mL, the highest tested concentration. Moreover, no toxicity was observed with most of the active fractions. The subsequent chemical investigation of the most interesting fractions led to identifying terpenes, phytosterols, phenolic compounds, and fatty acids as the main compounds. In conclusion, this study demonstrated that D. oliveri possesses valuable antibacterial activities in accordance with traditional use.

12.
Molecules ; 27(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364298

ABSTRACT

Antimicrobial resistance is a major public health issue raising growing concern in the face of dwindling response options. It is therefore urgent to find new anti-infective molecules enabling us to fight effectively against ever more numerous bacterial infections caused by ever more antibiotic-resistant bacteria. In this quest for new antibacterials, essential oils (or compounds extracted from essential oils) appear to be a promising therapeutic option. In the present work, we investigate the potential antibacterial synergy between a combination of terpinen-4-ol and α-terpineol (10:1) compared to standard tea tree oil. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. Then, time kill assays, in vitro cytotoxicity and bactericidal activity on latent bacteria (persisters) were investigated. Finally, an in silico study of the pharmacokinetic parameters of α-terpineol was also performed. Altogether, our data demonstrate that the combination of terpinen-4-ol and α-terpineol might be a precious weapon to address ESKAPE pathogens.


Subject(s)
Oils, Volatile , Terpenes , Terpenes/pharmacology , Cyclohexane Monoterpenes , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria
13.
Microorganisms ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35208891

ABSTRACT

The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.

14.
Int J Infect Dis ; 111: 303-309, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34450282

ABSTRACT

OBJECTIVES: Rubella cases in the Central African Republic (CAF) are currently identified during measles surveillance. This study aimed to investigate rubella epidemiology between 2015 and 2016 and to provide baseline genotype data for monitoring future rubella control efforts. METHODS: 831 measles IgM negative or equivocal sera from 2015/2016 were tested for rubella IgM antibodies and 350 rubella IgM positive sera collected between 2008 and 2016 were selected for PCR and sequencing. RESULTS: 411 of the 831 sera (49.5%) were rubella IgM positive and most cases (n=391, 95.1%) occurred between January and April. Most patients were between 5 and 9 years old (50.2%) and more than half of the rubella cases (56.7%) originated from the capital Bangui. Genotype information was obtained for 37 of the 350 selected rubella IgM-positive specimens, with the majority of the patients originating from Bangui (n=24, 64.9%) and sequences covering all years except 2009. Phylogenetic analysis identified genotypes 1E (n=12), 1G (n=5) and 2B (n=20), with 2B being detected from 2014 onwards. CONCLUSIONS: Our study confirmed the important role of rubella as a rash and fever disease in CAF and provided comprehensive data on rubella epidemiology and the first information on rubella genotypes in the country.


Subject(s)
Measles , Rubella , Central African Republic/epidemiology , Child , Child, Preschool , Genotype , Humans , Immunoglobulin M , Molecular Epidemiology , Phylogeny , Rubella/epidemiology , Rubella virus/genetics
15.
Eur Heart J ; 42(27): 2683-2691, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34023890

ABSTRACT

OBJECTIVE: The aim of this study was to assess the impact of sex on the management and outcome of patients according to aortic stenosis (AS) severity. INTRODUCTION: Sex differences in the management and outcome of AS are poorly understood. METHODS: Doppler echocardiography data of patients with at least mild-to-moderate AS [aortic valve area (AVA) ≤1.5 cm2 and peak jet velocity (VPeak) ≥2.5 m/s or mean gradient (MG) ≥25 mmHg] were prospectively collected between 2005 and 2015 and retrospectively analysed. Patients with reduced left ventricular ejection fraction (<50%), or mitral or aortic regurgitation >mild were excluded. RESULTS: Among 3632 patients, 42% were women. The mean indexed AVA (0.48 ± 0.17 cm2/m2), VPeak (3.74 ± 0.88 m/s), and MG (35.1 ± 18.2 mmHg) did not differ between sexes (all P ≥ 0.18). Women were older (72.9 ± 13.0 vs. 70.1 ± 11.8 years) and had more hypertension (75% vs. 70%; P = 0.0005) and less coronary artery disease (38% vs. 55%, P < 0.0001) compared to men. After inverse-propensity weighting (IPW), female sex was associated with higher mortality (IPW-HR: 1.91 [1.14-3.22]; P = 0.01) and less referral to valve intervention (competitive model IPW-HR: 0.88 [0.82-0.96]; P = 0.007) in the whole cohort. This excess mortality in women was blunted in concordant non-severe AS initially treated conservatively (IPW-HR = 1.03 [0.63-1.68]; P = 0.88) or in concordant severe AS initially treated by valve intervention (IPW-HR = 1.25 [0.71-2.21]; P = 0.43). Interestingly, the excess mortality in women was observed in discordant low-gradient AS patients (IPW-HR = 2.17 [1.19-3.95]; P = 0.01) where women were less referred to valve intervention (IPW-Sub-HR: 0.83 [0.73-0.95]; P = 0.009). CONCLUSION: In this large series of patients, despite similar baseline hemodynamic AS severity, women were less referred to AVR and had higher mortality. This seemed mostly to occur in the patient subset with discordant markers of AS severity (i.e. low-gradient AS) where women were less referred to AVR.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Female , Humans , Male , Retrospective Studies , Severity of Illness Index , Stroke Volume , Treatment Outcome , Ventricular Function, Left
16.
Molecules ; 26(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672875

ABSTRACT

Treatment of kidney stones is based on symptomatic medications which are associated with side effects such as gastrointestinal symptoms (e.g., nausea, vomiting) and hepatotoxicity. The search for effective plant extracts without the above side effects has demonstrated the involvement of antioxidants in the treatment of kidney stones. A local survey in Morocco has previously revealed the frequent use of Rubia tinctorum L. (RT) for the treatment of kidney stones. In this study, we first explored whether RT ethanolic (E-RT) and ethyl acetate (EA-RT) extracts of Rubia tinctorum L. could prevent the occurrence of urolithiasis in an experimental 0.75% ethylene glycol (EG) and 2% ammonium chloride (AC)-induced rat model. Secondly, we determined the potential antioxidant potency as well as the polyphenol composition of these extracts. An EG/AC regimen for 10 days induced the formation of bipyramid-shaped calcium oxalate crystals in the urine. Concomitantly, serum and urinary creatinine, urea, uric acid, phosphorus, calcium, sodium, potassium, and chloride were altered. The co-administration of both RT extracts prevented alterations in all these parameters. In the EG/AC-induced rat model, the antioxidants- and polyphenols-rich E-RT and EA-RT extracts significantly reduced the presence of calcium oxalate in the urine, and prevented serum and urinary biochemical alterations together with kidney tissue damage associated with urolithiasis. Moreover, we demonstrated that the beneficial preventive effects of E-RT co-administration were more pronounced than those obtained with EA-RT. The superiority of E-RT was associated with its more potent antioxidant effect, due to its high content in polyphenols.


Subject(s)
Antioxidants/therapeutic use , Ethanol/chemistry , Plant Extracts/chemistry , Polyphenols/therapeutic use , Rubia/chemistry , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Acetates/chemistry , Ammonium Chloride , Animals , Antioxidants/pharmacology , Body Weight/drug effects , Disease Models, Animal , Ethylene Glycol , Inhibitory Concentration 50 , Phenols/analysis , Polyphenols/pharmacology , Rats, Wistar , Urolithiasis/chemically induced , Urolithiasis/physiopathology
17.
Int J Mol Sci ; 22(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672995

ABSTRACT

Multidrug-resistant (MDR) bacteria constitute a global health issue. Over the past ten years, interest in nanoparticles, particularly metallic ones, has grown as potential antibacterial candidates. However, as there is no consensus about the procedure to characterize the metallic nanoparticles (MNPs; i.e., metallic aggregates) and evaluate their antibacterial activity, it is impossible to conclude about their real effectiveness as a new antibacterial agent. To give part of the answer to this question, 12 nm gold and silver nanoparticles have been prepared by a chemical approach. After their characterization by transmission electronic microscopy (TEM), Dynamic Light Scattering (DLS), and UltraViolet-visible (UV-vis) spectroscopy, their surface accessibility was tested through the catalytic reduction of the 4-nitrophenol, and their stability in bacterial culture medium was studied. Finally, the antibacterial activities of 12 nm gold and silver nanoparticles facing Staphylococcus aureus and Escherichia coli have been evaluated using the broth microdilution method. The results show that gold nanoparticles have a weak antibacterial activity (i.e., slight inhibition of bacterial growth) against the two bacteria tested. In contrast, silver nanoparticles have no activity on S. aureus but demonstrate a high antibacterial activity against Escherichia coli, with a minimum inhibitory concentration of 128 µmol/L. This high antibacterial activity is also maintained against two MDR-E. coli strains.


Subject(s)
Anti-Bacterial Agents/toxicity , Escherichia coli/drug effects , Gold/chemistry , Metal Nanoparticles/toxicity , Silver/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Dynamic Light Scattering , Escherichia coli/growth & development , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests/methods , Microscopy, Electron, Transmission , Spectrophotometry , Staphylococcus aureus/growth & development
18.
Biomed Pharmacother ; 131: 110762, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152925

ABSTRACT

Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.


Subject(s)
Amides/pharmacology , Phenols/pharmacology , Plants, Medicinal/chemistry , Amides/chemistry , Amides/isolation & purification , Animals , Humans , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology
19.
Antibiotics (Basel) ; 9(7)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650521

ABSTRACT

Tea Tree oil (TTO) is well known for its numerous good properties but might be also irritating or toxic when used topically or ingested, thus limiting the number of possible applications in Humans. The aim of the study was to characterize the antimicrobial spectrum as well as the toxicity of Titroleane™, a new anti-infective agent obtained from TTO but cleared of its toxic monoterpenes part. The susceptibility to Titroleane™ of various pathogens (bacteria and fungi) encountered in animal and human health was studied in comparison with that of TTO. Antimicrobial screening was carried out using the broth microdilution method. Activities against aerobic, anaerobic, fastidious and non-fastidious microorganisms were performed. For all microorganisms tested, the MIC values for Titroleane™ ranged from 0.08% to 2.5%, except for Campylobacter jejuni, and Aspergillus niger. In particular, Titroleane™ showed good efficacy against skin and soft tissue infection pathogens, such as methicillin resistant Staphylococcus aureus (MRSA), intra-abdominal infections and oral pathogens, as well as fish farming pathogens. Toxicity testing showed little and similar cytotoxicities between TTO and Titroleane™ of 37% and 23%, respectively at a concentration of 0.025% (v/v). Finally, we demonstrated that the antimicrobial activity of Titroleane™ is similar to that of TTO.

20.
Microorganisms ; 8(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349409

ABSTRACT

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...