Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 406, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987828

ABSTRACT

BACKGROUND: Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. RESULTS: We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. CONCLUSIONS: Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.


Subject(s)
Escherichia coli , Inclusion Bodies , Microscopy, Atomic Force , Single-Cell Analysis , Spectrophotometry, Infrared , Inclusion Bodies/chemistry , Escherichia coli/chemistry , Microscopy, Atomic Force/methods , Spectrophotometry, Infrared/methods , Single-Cell Analysis/methods
2.
Int J Food Microbiol ; 418: 110709, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38663147

ABSTRACT

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.


Subject(s)
Bacillus cereus , Hot Temperature , Spores, Bacterial , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Bacillus cereus/genetics , Bacillus cereus/growth & development , Bacillus cereus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Thermotolerance , Adaptation, Physiological , Whole Genome Sequencing , Food Microbiology , Genome, Bacterial , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...