Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177240

ABSTRACT

The aim of this work was to study the stability and morphological properties of polystyrene latex containing kaolinite as a filler during the process of synthesis of nanocomposites viaemulsion polymerization. Nanocomposites with 1, 3, and 5 wt% of kaolinite were prepared. Latexes with 1 to 3 wt% of kaolinite were stable during the polymerization reaction. Hydrodynamic diameters of 93.68 and 82.11 nm were found for latexes with 1 and 3 wt% of kaolinite, respectively. The quantities of 1 to 3 wt% of kaolinite added during the reaction did not influence the reaction conversion curves or the number of particles. X-ray diffraction (XRD) and unconventional techniques of scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) showed the presence of exfoliated and intercalated structures of the kaolinite.

2.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431841

ABSTRACT

The species Trattinnickia rhoifolia Willd, (T. rhoifolia), which belongs to the Burseraceae family, is widely used in ethnopharmacological cultural practices by traditional Amazonian people for anti-inflammatory purposes, sometimes as their only therapeutic resource. Although it is used in teas, infusions, macerations and in food, the species is still unexplored in regard to its pharmacophoric potential and chemical profile. Therefore, the aim of this study was to conduct a phytochemical characterization of the hydroethanolic extract of T. rhoifolia leaves (HELTr) and to evaluate the acute toxicity and anti-inflammatory activity of this species using zebrafish (Danio rerio). The extract was analyzed by gas chromatography−mass spectrometry (GC-MS). The evaluation of the acute toxicity of the HELTr in adult zebrafish was determined using the limit test (2000 mg/kg), with behavioral and histopathological evaluations, in addition to the analysis of the anti-inflammatory potential of HELTr in carrageenan-induced abdominal edema, followed by the use of the computational method of molecular docking. The phytochemical profile of the species is chemically diverse, suggesting the presence of the fatty acids, ester, alcohol and benzoic acid classes, including propanoic acid, ethyl ester and hexadecanoic acid. In the studies of zebrafish performed according to the index of histopathological changes (IHC), the HELTr did not demonstrate toxicity in the behavioral and histopathological assessments, since the vital organs remained unchanged. Carrageenan-induced abdominal edema was significantly reduced at all HELTr doses (100, 200 and 500 mg/kg) in relation to the negative control, dimethyl sulfoxide (DMSO), while the 200 mg/kg dose showed significant anti-inflammatory activity in relation to the positive control (indomethacin). With these activities being confirmed by molecular docking studies, they showed a good profile for the inhibition of the enzyme Cyclooxygenase-2 (COX-2), as the interactions established at the sites of the receptors used in the docking study were similar to the controls (RCX, IMN and CEL). Therefore, the HELTr has an acceptable degree of safety for acute toxicity, defined in the analysis of behavioral changes, mortality and histopathology, with a significant anti-inflammatory action in zebrafish at all doses, which demonstrates the high pharmacophoric potential of the species. These results may direct future applications and drug development but still require further elucidation.


Subject(s)
Burseraceae , Zebrafish , Animals , Carrageenan/adverse effects , Molecular Docking Simulation , Anti-Inflammatory Agents/chemistry , Phytochemicals/analysis , Plant Extracts/chemistry , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Esters
3.
Chem Biodivers ; 18(3): e2000938, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33508178

ABSTRACT

Aniba parviflora (Meisn.) Mez (Lauraceae) is an aromatic plant of the Amazon rainforest, which has a tremendous commercial value in the perfumery industry; it is popularly used as flavoring sachets and aromatic baths. In Brazilian folk medicine, A. parviflora is used to treat victims of snakebites. Herein, we analyzed the chemical composition of A. parviflora bark essential oil (EO) and its effect on the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. EO was obtained by hydrodistillation and characterized by GC-MS and GC-FID. The main constituents of EO were linalool (16.3±3.15), α-humulene (14.5±2.41 %), δ-cadinene (10.2±1.09 %), α-copaene (9.51±1.12 %) and germacrene B (7.58±2.15 %). Initially, EO's cytotoxic effect was evaluated against five cancer cell lines (HepG2, MCF-7, HCT116, HL-60 and B16-F10) and one non-cancerous one (MRC-5), using the Alamar blue method after 72 h of treatment. The calculated IC50 values were 9.05, 22.04, >50, 15.36, 17.57, and 30.46 µg/mL, respectively. The best selectivity was for HepG2 cells with a selective index of 3.4. DNA Fragmentation and cell cycle distribution were quantified in HepG2 cells by flow cytometry after a treatment period of 24 and 48 h. The effect of EO on tumor development in vivo was evaluated in a xenograft model using C.B-17 SCID mice engrafted with HepG2 cells. In vivo tumor growth inhibition of HepG2 xenograft at the doses of 40 and 80 mg/kg were 12.1 and 62.4 %, respectively.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Lauraceae/chemistry , Oils, Volatile/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Mice , Mice, SCID , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plant Bark/chemistry , Stereoisomerism , Structure-Activity Relationship
4.
Environ Sci Technol ; 53(15): 8682-8694, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31335134

ABSTRACT

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.


Subject(s)
Atmosphere , Pentanes , Aerosols , Butadienes , Hemiterpenes , Sulfates , Tennessee
5.
Trends Plant Sci ; 23(12): 1081-1101, 2018 12.
Article in English | MEDLINE | ID: mdl-30472998

ABSTRACT

Isoprene and other plastidial isoprenoids are produced primarily from recently assimilated photosynthates via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. However, when environmental conditions limit photosynthesis, a fraction of carbon for MEP pathway can come from extrachloroplastic sources. The flow of extrachloroplastic carbon depends on the species and on leaf developmental and environmental conditions. The exchange of common phosphorylated intermediates between the MEP pathway and other metabolic pathways can occur via plastidic phosphate translocators. C1 and C2 carbon intermediates can contribute to chloroplastic metabolism, including photosynthesis and isoprenoid synthesis. Integration of these metabolic processes provide an example of metabolic flexibility, and results in the synthesis of primary metabolites for plant growth and secondary metabolites for plant defense, allowing effective use of environmental resources under multiple stresses.


Subject(s)
Butadienes/metabolism , Hemiterpenes/metabolism , Carbohydrate Metabolism , Carbon/metabolism , Metabolic Networks and Pathways , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...