Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895241

ABSTRACT

Temporal expectation and temporal attention distinctly improve performance and gaze stability, and interact at the behavioral and neural levels. Foreperiod-the interval between the preparatory signal and stimulus onset-facilitates temporal expectation. Preceding foreperiod-the foreperiod in the previous trial-modulates expectation at behavioral and oculomotor levels. Here, we investigated whether preceding foreperiod guides temporal attention. Regardless of the preceding foreperiod, temporal attention improved performance, particularly at early moments,and consistently accelerated gaze stability onset and offset by shifting microsaccade timing. However, only with preceding expected foreperiods, attention inhibited microsaccade rates. Moreover, preceding late foreperiods weakened expectation effects on microsaccade rates, but such a weakening was overridden by attention. Altogether, these findings reveal that the oculomotor system's flexibility does not translate to performance, and suggest that although selection history can be utilized as one of the sources of expectation in subsequent trials, it does not necessarily determine, strengthen, or guide attentional deployment.

2.
Sci Rep ; 14(1): 4624, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409235

ABSTRACT

Temporal attention is voluntarily deployed at specific moments, whereas temporal expectation is deployed according to timing probabilities. When the target appears at an expected moment in a sequence, temporal attention improves performance at the attended moments, but the timing and the precision of the attentional window remain unknown. Here we independently and concurrently manipulated temporal attention-via behavioral relevance-and temporal expectation-via session-wise precision and trial-wise hazard rate-to investigate whether and how these mechanisms interact to improve perception. Our results reveal that temporal attention interacts with temporal expectation-the higher the precision, the stronger the attention benefit, but surprisingly this benefit decreased with delayed onset despite the increasing probability of stimulus appearance. When attention was suboptimally deployed to earlier than expected moments, it could not be reoriented to a later time point. These findings provide evidence that temporal attention and temporal expectation are different mechanisms, and highlight their interplay in optimizing visual performance.


Subject(s)
Motivation , Time Perception , Reaction Time , Probability , Visual Perception
3.
J Vis ; 23(3): 9, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36928299

ABSTRACT

Temporal attention is the selection and prioritization of information at a specific moment. Exogenous temporal attention is the automatic, stimulus driven deployment of attention. The benefits and costs of exogenous temporal attention on performance have not been isolated. Previous experimental designs have precluded distinguishing the effects of attention and expectation about stimulus timing. Here, we manipulated exogenous temporal attention and the uncertainty of stimulus timing independently and investigated visual performance at the attended and unattended moments with different levels of temporal uncertainty. In each trial, two Gabor patches were presented consecutively with a variable stimulus onset. To drive exogenous attention and test performance at attended and unattended moments, a task-irrelevant, brief cue was presented 100 ms before target onset, and an independent response cue was presented at the end of the trial. Exogenous temporal attention slightly improved accuracy, and the effects varied with temporal uncertainty, suggesting a possible interaction of temporal attention and expectations in time.


Subject(s)
Cues , Humans , Uncertainty , Reaction Time
4.
Atten Percept Psychophys ; 84(7): 2167-2185, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35996056

ABSTRACT

The timing of brief stationary sounds has been shown to alter different aspects of visual motion, such as speed estimation. These effects of auditory timing have been explained by temporal ventriloquism and auditory dominance over visual information in the temporal domain. Although previous studies provide unprecedented evidence for the multisensory nature of speed estimation, how attention is involved in these audiovisual interactions remains unclear. Here, we aimed to understand the effects of spatial attention on these audiovisual interactions in time. We utilized a set of audiovisual stimuli that elicit temporal ventriloquism in visual apparent motion and asked participants to perform a speed comparison task. We manipulated attention either in the visual or auditory domain and systematically changed the number of moving objects in the visual field. When attention was diverted to a stationary object in the visual field via a secondary task, the temporal ventriloquism effects on perceived speed decreased. On the other hand, focusing attention on the auditory stimuli facilitated these effects consistently across different difficulty levels of secondary auditory task. Moreover, the effects of auditory timing on perceived speed did not change with the number of moving objects and existed in all the experimental conditions. Taken together, our findings revealed differential effects of allocating attentional resources in the visual and auditory domains. These behavioral results also demonstrate that reliable temporal ventriloquism effects on visual motion can be induced even in the presence of multiple moving objects in the visual field and under different perceptual load conditions.


Subject(s)
Auditory Perception , Motion Perception , Acoustic Stimulation/methods , Attention , Humans , Motion , Photic Stimulation/methods , Sound , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...